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Abstract

Let

b∑
i=a

1

i
=

ua,b
va,b

with ua,b and va,b coprime. In their influential monograph

[1, p. 34], Erdős and Graham ask, among many other questions, the following:
Does there, for every fixed a, exist a b such that va,b < va,b−1? If so, what is
the least such b = b(a)? In this paper we will investigate these problems in a
more general setting, answer the first question in the affirmative and obtain the
bounds a+ 0.54 log(a) < b(a) < 4.38a, which hold for all large enough a.

Contents

1 Introduction 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Upper bounds 5
2.1 Proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Under the assumption of a large prime divisor . . . . . . . . . . . 6
2.3 Some examples and a return to the classical case . . . . . . . . . 10
2.4 Exponential growth . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Large prime divisors exist . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Explicit bounds for non-zero sequences and Dirichlet characters . 23
2.7 Bounding prime divisors . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Diophantine approximation to the rescue . . . . . . . . . . . . . . 26
2.9 Explicit bounds for all sequences . . . . . . . . . . . . . . . . . . 32

3 Lower bounds 35
3.1 A logarithmic lower bound . . . . . . . . . . . . . . . . . . . . . . 35
3.2 A sequence with logarithmic difference . . . . . . . . . . . . . . . 38
3.3 Improvements in the classical case . . . . . . . . . . . . . . . . . 40

4 Two possible generalizations 50
4.1 Arbitrary sequences of numerators . . . . . . . . . . . . . . . . . 50
4.2 When the denominators are powers of consecutive integers . . . . 53

5 Final thoughts and remarks 61

Bibliography 64

1



1 Introduction

1.1 Introduction

Let {ri}i∈N be a fixed periodic sequence of integers, not all equal to 0, with
period t. That is, for every i ∈ N it holds true that ri+t = ri and for at least
one (and therefore for infinitely many) i, ri 6= 0. Let a be a given positive

integer. In this paper we shall be concerned with sums of the form

b∑
i=a

ri
i

. More

precisely, if ua,b ∈ Z and va,b ∈ N are coprime integers for which
ua,b
va,b

=

b∑
i=a

ri
i

,

we will be interested in whether va,b < va,b−1 holds for some b.

Paul Erdős and Ronald Graham asked this question in [1] for the case where
ri = 1 for all i and this was solved independently by Peter Shiu in [2] and
in unpublished work (predating the current manuscript) by the author. Even
though the pre-print [2] only explicitly deals with a = 1, their methods can be
used for arbitrary a ∈ N as well. In personal communication Ernie Croot then
asked about the far more general result where ri ∈ A for some fixed finite set
A. This generalization turns out to be false, however. So it seems natural to
ask for a reasonable condition on the ri that does guarantee that va,b < va,b−1

holds for some b, and it will turn out that periodicity is sufficient.

Note that, in common vernacular, va,b < va,b−1 means that the fraction was
simplified. Since a fraction can be simplified precisely when both numerator
and denominator share a prime divisor, we would like to get a handle on the
prime factorizations of ua,b and va,b. However, even in the special case of the
harmonic numbers Hn, where ri = 1 for all i, a = 1 and b = n, surprisingly
little is known about this.

For example, in [3] it was conjectured that for every prime p the numerator of
Hn is only finitely often divisible by p, and this is still unsolved. In the other
direction, we have a well-known eponymous theorem by Wolstenholme ([4])
stating that for any prime number p ≥ 5, the numerator of Hp−1 is divisible
by p2. Various generalizations and extensions of this result are known and can
be found in [5]. Let Ln be the least common multiple of 1, 2, . . . , n. In [2] it is
claimed that for every sequence of odd primes p1, p2, .., pk there exists a positive
integer n such that the denominator of Hn is a divisor of Ln

p1p2···pk . Unfortunately

the proof depends on the linear independence of the terms θi = log(p1)
log(pi)

for

1 ≤ i ≤ k, which is not known for k ≥ 3. The proof is valid for k = 2 and
follows for general k from conjectures like Schanuel’s Conjecture. Finally, it is
often conjectured (see e.g. [1], [2] and [12]) that there exist infinitely many n
for which the denominator of Hn is equal to Ln, and this too is not yet solved.
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1.2 Overview of results

The main theorem we obtain in Section 2 is that for every a ∈ N there exist
infinitely many integers b > a for which va,b < va,b−1. Furthermore, if we denote
by b(a) the smallest such b, then there exists an effective constant c, which only
depends on the sequence {ri}i∈N, such that b(a) < ca. For example, in the orig-
inal case r1 = t = 1 we have the upper bound b(a) ≤ 162

37 (a− 1) < 4.38a, which
is true for all a ≥ 6. This section is (by far) the longest and most technical part
of this paper and comprises the most important and interesting ideas and results.

In Section 3 we will look at lower bounds and prove that b(a) > a+( 1
2−ε) log(a)

holds for all ε > 0 and all large enough a. This lower bound turns out to be
close to optimal, because if ri 6= 0 for all i, then we will show the existence of
infinitely many a for which b(a) < a+ (2 + ε) log(a). We may therefore deduce

that the lower limit lim inf
a→∞

(
b(a)−a
log a

)
exists when ri 6= 0 and is bounded between

1
2 and 2. We will then end this section with some improvements when ri = 1

for all i, and this gives us 0.54 < lim inf
a→∞

(
b(a)−a
log a

)
< 0.61 in that case.

Finally, in Section 4 we look at two possible generalizations. First we look at
what happens when the sequence {ri}i∈N is no longer assumed to be periodic.
For example, if we only assume ri = ±1, then it is possible that va,b is a
monotone increasing function of b. In fact, we will see that there are very few
results in this paper that generalize to the non-periodic case. A nice exception
to this will be a theorem stating that if the ri are non-zero and remain bounded,
then a function similar to u1,b will have arbitrarily large prime divisors. Secondly

we look at sums of the form
ua,b
va,b

=

b∑
i=a

ri
id

, where d is a positive integer and we

define bd(a) to be the smallest positive integer b for which va,b < va,b−1. We
will then show that, if at least two out of r1, r2, r3, r4, r5 are non-zero and d
is large enough, then bd(a) is finite for all a. To finish it all up, we will focus
on the case where all ri are equal to 1 and prove that there exists a constant
cd = O(log10(d)) so that for every a, bd(a) ≤ cda. We will furthermore calculate
this constant cd for all d < 120.
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1.3 Notation

Instead of directly dealing with the sequence va,b, we shall instead work with the
more robust sequence La,b, defined as the least common multiple of all integers

i ∈ {a, a + 1, .., b} for which ri 6= 0. We then define Xa,b as Xa,b = La,b

b∑
i=a

ri
i

and will abbreviate L1,n and X1,n to Ln and Xn respectively. The letters p and
q are reserved for prime numbers and most other (Roman) letters will generally
denote integers, often non-negative. The integer a should be viewed as fixed, but
arbitrary, and b(a) denotes the smallest integer b > a such that va,b < va,b−1.
All these values clearly depend on the sequence of ri, and this dependence is
always implicit; the sequence of ri should be viewed as fixed but arbitrary as
well.

Whenever we say that pk exactly divides an integer n, we mean that n is divis-
ible by pk, but not by pk+1. In other words, pk is the largest power of p that
divides n, and whenever p does not divide n at all, then this number k equals 0.
If the prime p is fixed or understood, then e(n) will often denote the number k
such that pk exactly divides n. When confusion might arise we sometimes use
a subscript like ep(n) to emphasize the dependence on the prime p.

O(f(x)) and o(f(x)) are the familiar Big-O and Little-o notations, while x|y
reads ’x divides y’. The symbols R, Z and N represent the set of real numbers,
the set of integers and the set of positive integers respectively. The greek letter
λ = λ(t) will be the Carmichael function; the smallest positive integer such that
pλ ≡ 1 (mod t) for all p with gcd(p, t) = 1. The dependence of λ on t will always
be implicit and we have λ|ϕ(t), where ϕ is Euler’s totient function. The number
of primes smaller than or equal to n is denoted by π(n) and we often make use

of the prime number theorem which states that lim
n→∞

π(n) log(n)
n = 1. We will

refer to both the prime number theorem and its generalization to arithmetic
progressions by the acronym PNT. Finally, ε will denote a small, positive real
number.
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2 Upper bounds

2.1 Proof strategy

Our goal in this section is to prove that b(a) is finite and, moreover, that there
exists a constant c such that for every a we have b(a) < ca. For pedagogical
purposes we will first prove this in Section 2.2 if we assume a certain large prime
p divides Xn for some n ∈ N. This furthermore motivates the rest of the proof;
trying to find such a large prime divisor p of Xn. That such a prime exists is
immediate when r1 = t = 1, initially leading to a bound of b(a) ≤ 6a in that
case. In Section 2.3 we will look at some examples and prove that when ri = 1
and a ≥ 6, we can tighten the bound to b(a) ≤ 162

37 (a− 1).

To find this large prime divisor of Xn, we first have to show a lower bound on
Xn itself. We will do this in Section 2.4 where we first show that there exists a
constant c0 such that |Xn| > cn0 holds for all large enough n. This follows from
some estimates on Xn

Ln
and the fact that Ln grows exponentially fast. However,

in the end we not only would like to prove b(a) < ca, we actually want to give
an explicit value for this constant c as well. So phrases like ’for large enough n’
will generally not suffice. Therefore, we take some time to find an interval that
we can write down explicitly, where |Xn| is large enough for our purposes for
sufficiently many n in that interval.

Section 2.5 is then aimed at proving that the prime divisors of Xn can get ar-
bitrarily large. If we let r = maxi |ri| and define m = 1 + max(r, t) (although
any integer larger than max(r, t) works), then our proof will actually show that
for every interval I of length at least e7m, there exists an n ∈ I for which Xn is
divisible by a prime p ≥ m.

The proof of that statement goes through a few steps; first we split up the
primes into three subsets Σ1, Σ2 and Σ3. The first subset contains the primes
larger than or equal to m, so it would suffice to find an n ∈ I for which
the largest divisor of Xn containing only primes from Σ2 or Σ3 is smaller
than |Xn|. Then we will see that the largest divisor of Xn containing only
primes from Σ3 is always small in a certain congruence class. And finally, let
2 ≤ p1 < p2 < . . . < py < m be the primes in Σ2. We will construct a nesting
sequence of intervals I ⊃ I1 ⊃ I2 ⊃ . . . ⊃ Iy, for which the power of pσ(j)

that divides Xn is small for n ∈ Ij , where σ : {1, 2, . . . , y} → {1, 2, . . . , y} is a
permutation. And so for all n ∈ Iy the power of any prime in Σ2 dividing Xn is
small. Combining these estimates on the powers of primes from Σ2 and Σ3 that
divide Xn then implies that Xn must have a prime divisor from Σ1 as well.

Write n = lpk with gcd(l, p) = 1 and p ≥ m a prime that divides Xn. By Section
2.5 such n and p exist. Then by setting b = npλk1 for some suitable k1, it turns
out that in order to show va,b < va,b−1, we need to check that gcd(l,Xa,b−1) < p.
Now, in the case that ri 6= 0 for all i with gcd(i, t) = 1, we have l < p, so this
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condition is trivially satisfied. This will allow us to calculate an explicit upper
bound in Section 2.6 for the constant c for which b(a) < ca holds for all a, when
gcd(i, t) = 1 implies ri 6= 0. This c will turn out to grow doubly exponential in
m.

In the general case it is possible that l > p, which can make it more difficult
to check the condition gcd(l,Xa,b−1) < p. So our goal is to make sure that
gcd(l,Xa,b−1) is small and we therefore need some information on the prime
divisors of l and Xa,b−1. Section 2.7 is then dedicated to proving that for every
prime q ∈ Σ1 ∪ Σ2 there are certain intervals such that for all n inside those
intervals, the power of q that divides Xn is bounded.

In Section 2.8 we then pick a prime q ∈ Σ1 ∪Σ2 for which, if qy exactly divides
l, then qy is large. Using results from Section 2.7 we can ensure that, if b− 1 is
contained in a certain interval, then the power of q that divides Xa,b−1 is small,
so that gcd(l,Xa,b−1) is small as well, which was our goal. These intervals are of
the form [cqq

λk2 , (cq +1)qλk2), where cq is a constant and k2 can be any integer.
So when we now choose b = npλk1 , for some k1, then we need the inequalities
cqq

λk2 < npλk1 ≤ (cq + 1)qλk2 to hold. When we take logarithms, we end up
with a linear form in logarithms and, using a well-known Diophantine approx-
imation result by Dirichlet, these inequalities can be satisfied infinitely often,
implying that b(a) is finite.

Finally, by using an extension of a result by Baker, we also have a lower bound
for the linear form in logarithms that we encountered in Section 2.8. In Section
2.9 we then use this lower bound to give an explicit linear upper bound for b(a).
In this general case the constant c grows triply exponential in m.

2.2 Under the assumption of a large prime divisor

Let r = maxi |ri| and define c1 to be the smallest positive integer such that
rc1 6= 0. Now let p > max(r, t) be a prime number that divides Xi for some
integer i ≥ c1 and let n = n(p) be the smallest such i. In Section 2.5 we will
prove that such a prime p actually exists, but for now we will simply assume we
have one at our disposal.

Necessarily we see that p does not divide Xn−1 and rn 6= 0. Since p >
max(r, t) ≥ rn this implies 0 < |rn| < p. Write n = lpk with gcd(l, p) = 1
and let λ be such that qλ ≡ 1 (mod t), whenever gcd(q, t) = 1. Now we set
b = npλk1 = lpλk1+k, where k1 is an integer for which pλk1+k ≥ max(a, 2t). We
then have the following theorem.

Theorem 1. If gcd(l,Xa,b−1) < p, then va,b < va,b−1. Furthermore, if the
condition gcd(l,Xa,b−1) < p is satisfied for the smallest k1 such that pλk1+k ≥
max(a, 2t), then b(a) ≤ max(a− 1, 2t− 1)lpλ.
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Proof. Let us first remark that the second part is easy to see, because for the
smallest possible k1, we have pλk1+k > max(a− 1, 2t− 1) ≥ pλ(k1−1)+k, imply-

ing b = lpλk1+k ≤ max(a − 1, 2t − 1)lpλ. Now, in general we have
ua,b
va,b

=
Xa,b
La,b

,

so if we define ga,b to be the greatest common divisor of Xa,b and La,b, then

va,b =
La,b
ga,b

. And thus, if La,b = La,b−1, then va,b < va,b−1 holds true, precisely

when ga,b > ga,b−1. We claim that, indeed, La,b and La,b−1 are equal while ga,b
is larger than ga,b−1. We start with the first part of this claim, but before we
do so, we need some properties.

Lemma 1. There exists an l1 ∈ N with 1 ≤ l1 < l for which rl1pk 6= 0.
Furthermore, pk exactly divides Ln and pλk1+k exactly divides La,b.

Proof. As we will do a lot in this paper, we look at Xn (mod p) and remove
the terms in the sum which are divisible by p. In general, Ln, which is divisible
by n = lpk, must be divisible by pk. In other words, if Lnri

i does not vanish
modulo p, then pk divides i. But when no other l1 < l with rl1pk 6= 0 exists,

there is only one i for which Lnri
i does not vanish modulo p, namely i = lpk = n

itself. So we would then get:

Xn = Ln

n∑
i=1

ri
i

=

n∑
i=1

Lnri
i

≡ Lnrn
n

(mod p)

≡ Lnrn
lpk

(mod p)

6≡ 0 (mod p)

And this would contradict the assumption that p divides Xn. Note that the last
inequality uses the fact that 0 < |rn| < p. So this proves the first property and
remark that this property implies that p does not divide Ln

Ln−1
.

For the other two properties, since Ln is divisible by pk and b = npλk1 ≡ n
(mod t), we see that rb = rn 6= 0, which implies that La,b is divisible by pλk1+k.
To prove that these are also the largest powers of p dividing Ln and La,b, assume
by contradiction that pλk1+k+1 divides La,b. We will show that this implies that
Ln is divisible by pk+1, which will lead to a contradiction. If pλk1+k+1 divides
La,b, then there exists a positive integer g with a ≤ g ≤ b such that g is divisible
by pλk1+k+1 and for which rg 6= 0. Now we can choose h = gp−λk1 ≤ bp−λk1 = n
and note that h ≡ g (mod t) by definition of λ, so rh = rg, which we assumed
to be non-zero. Furthermore, h would be divisible by pk+1 and, since rh 6= 0,
so would Ln. However, Lnrn

n would then vanish modulo p and we would get

7



Xn = Ln
Ln−1

Xn−1 + Lnrn
n ≡ Ln

Ln−1
Xn−1 (mod p). This is impossible, since it

contradicts the assumption that n is the smallest i for which p divides Xi.

With the proof of Lemma 1 out of the way, let us focus on our (intermediate)
goal again; proving that La,b and La,b−1 are equal to each other, in which case
va,b < va,b−1 is equivalent with ga,b > ga,b−1.

Lemma 2. La,b = La,b−1.

Proof. Since La,b = lcm(b, La,b−1) = lcm(lpλk1+k, La,b−1) with gcd(l, pλk1+k) =
1, it suffices to show that both l and pλk1+k divide La,b−1.

We observe that l|(b − lt) and we claim that this implies that l|La,b−1. To see
this, first note that rb−lt = rb = rn 6= 0. Secondly, b > b−lt ≥ lmax(a, 2t)−lt =
lmax(a − t, t) ≥ 2 max(a − t, t) ≥ a, since l ≥ 2 by Lemma 1. And so we con-
clude that b− lt, which is a multiple of l, lies in the interval [a, b− 1] and must
therefore divide La,b−1.

To show that pλk1+k divides La,b−1, we use the existence of a positive integer
l1 < l for which rl1pk 6= 0, as guaranteed by Lemma 1. Using this l1, then
rl1pλk1+k 6= 0 as well, while a ≤ pλk1+k ≤ l1p

λk1+k < lpλk1+k = b. And so

La,b−1 will be divisible by l1p
λk1+k, and in particular by pλk1+k.

Now it suffices to show that ga,b > ga,b−1. Morally, this holds because p dividing
Xn implies that p divides Xa,b as well. While, on the other hand, p does not
divide Xa,b−1, since Xa,b−1 6≡ Xa,b (mod p). Let us make this into a lemma.

Lemma 3. p divides Xa,b, while p does not divide Xa,b−1.

Proof. Let us take a look at Xn (mod p) again.

Xn = Ln

n∑
i=1

ri
i

≡ Ln
l∑
i=1

ripk

ipk
(mod p)

≡ Ln
pk

l∑
i=1

ripk

i
(mod p)

≡ 0 (mod p)

By Lemma 1, pk exactly divides Ln, so for this sum to be congruent to 0 (mod p)

we must have that

l∑
i=1

ripk

i
≡ 0 (mod p). Now let us use this knowledge in the

analogous sum for Xa,b.
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Xa,b = La,b

b∑
i=a

ri
i

≡ La,b
l∑
i=1

ripλk1+k

ipλk1+k
(mod p)

≡ La,b
pλk1+k

l∑
i=1

ripk

i
(mod p)

≡ 0 (mod p)

And indeed we see that p divides Xa,b as well. On the other hand, note that

p does not divide
La,brb
lpλk1+k by Lemma 1. From this observation it follows that

Xa,b−1 = Xa,b− La,brb
lpλk1+k 6≡ Xa,b (mod p), and we conclude that p does not divide

Xa,b−1.

Now we are almost ready to finish up our proof, but before we do so, we need
one last lemma.

Lemma 4. Let w, x, y, z be any non-zero integers such that y divides wx.

Then gcd(w,
wx

y
+ z) is an integer multiple of

gcd(w, z)

gcd(y, z
gcd(z,wy ) )

. In particular,

gcd(w, wxy + z) ≥ gcd(w,z)
gcd(y,z) .

Proof. To prove this, let q be any prime dividing w and let qα, qβ , qγ , qδ be the
largest powers of q dividing w, x, y, z respectively. If we let qµ be the largest
power of q dividing gcd(w, wxy + z) and let qν be the largest power of q dividing

gcd(y, z
gcd(z,wy ) ), then what we want to prove is equivalent to µ+ ν ≥ min(α, δ).

Note that µ ≥ min(α, α+ β − γ, δ), so that µ+ ν ≥ min(α, α+ β − γ + ν, δ). It
therefore suffices to show that α+β−γ+ν ≥ min(α, δ). Now we remark that ν is
equal to min(γ, δ−min(δ, α−γ)), so there are two possibilities. If ν = γ, then we
see α+β−γ+ν = α+β. On the other hand, if ν = δ−min(δ, α−γ) ≥ δ−α+γ,
then α + β − γ + ν ≥ β + δ. In both cases α + β − γ + ν ≥ min(α, δ), and we
are done.

We are going to apply Lemma 4 with w = La,bp
−λk1−k, x = rb, y = l and

z = Xa,b−1. The integers w and y are trivially non-zero, the fact that x 6= 0
was mentioned in the proof of Lemma 1 and z is non-zero by Lemma 3. We will
now calculate ga,b to finish the proof of Theorem 1.
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ga,b = gcd(La,b, Xa,b)

= gcd(pλk1+k, Xa,b) gcd

(
La,b
pλk1+k

, Xa,b

)
≥ p gcd

(
La,b
pλk1+k

, Xa,b

)
= p gcd

(
La,b
pλk1+k

, Xa,b−1 +
La,brb
b

)
= p gcd

(
La,b
pλk1+k

, Xa,b−1 +
La,brb
lpλk1+k

)
≥ p

gcd(l,Xa,b−1)
gcd

(
La,b
pλk1+k

, Xa,b−1

)
> gcd

(
La,b
pλk1+k

, Xa,b−1

)
= gcd

(
La,b−1

pλk1+k
, Xa,b−1

)
= gcd(La,b−1, Xa,b−1)

= ga,b−1

2.3 Some examples and a return to the classical case

In this subsection we would like to look at a couple of examples, in particular
the case where ri = 1 for all i. The ideas and proofs in this section are not
needed for the rest of this chapter, but seeing what happens in a few explicit
examples, could prove useful in building some intuition.

Since gcd(l,Xa,b−1) ≤ l ≤ n, it is worth pointing out that as soon as we find
an integer n and a prime p > max(r, t, n) such that p divides Xn, then the
condition in Theorem 1 is satisfied and b(a) is finite for all a. In practice in
turns out that, regardless of the sequence of r1, r2, . . . that is chosen, one very
often quickly finds such positive integers n for which Xn is divisible by a prime
p > max(r, t, n). As an instructive example, let us look at all possible sequences
of ri for which max(r, t) ≤ 2. Since we care about the divisors of Xn, we should
view two sequences r1, . . . , rt and r′1, . . . , r

′
t as morally the same if ri = −r′i for

all i, as Xn and −Xn have the same divisors. We will therefore assume that the
first non-zero ri is actually positive. Furthermore, for t = 2 we may, without loss
of generality, assume that r1 6= r2. With these assumptions there are 12 distinct
sequences with max(r, t) ≤ 2. We have tabulated these sequences, together with
an n and a prime p > max(r, t, n) such that Xn is divisible by p. And one can see
that for all 12 sequences, one only has to add two or three (non-zero) fractions
together to find such an n. Moreover, for the 8 sequences with ri 6= 0 for all i
we would, with the use of Theorem 1, obtain b(a) ≤ 21a.
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t r1 r2 n p

1 1 - 2 3
1 2 - 2 3
2 1 -2 2 3
2 1 -1 3 5
2 1 0 5 23
2 1 2 3 7
2 2 -2 3 5
2 2 -1 2 3
2 2 0 5 23
2 2 1 2 5
2 0 1 6 11
2 0 2 6 11

Specifying to ri = 1 for the rest of this section, we obtain the following corollary
of Theorem 1.

Corollary 1. In the case where ri = 1 for all i, we have b(a) ≤ 6(a − 1), for
all a > 1.

It is however possible to improve upon this corollary. Recall that, if k is such
that 3k < a ≤ 3k+1, then the proof of Theorem 1 shows that with f(a) = 2·3k+1

one has va,f(a) < va,f(a)−1. So for all a ∈ (3k, 3k+1] the same value of f(a) is
chosen. To improve upon Corollary 1, for k ≥ 4 we are going to split up the
interval (3k, 3k+1] into five sub-intervals and let the value of f(a) depend on the
sub-interval that contains a. First, let us state our improvement.

Theorem 2. In the case where ri = 1 for all i, we have b(a) ≤ 162
37 (a − 1) <

4.38a, for all a ≥ 6.

Proof. To start off, for 6 ≤ a ≤ 81, we define f(a) as follows:

f(a) =



18 if 6 ≤ a ≤ 9

35 if 10 ≤ a ≤ 14

54 if 15 ≤ a ≤ 27

75 if 28 ≤ a ≤ 50

162 if 51 ≤ a ≤ 81

Then one can check that f(a) < 4(a − 1) < 162
37 (a − 1) holds for all these a

and, possibly with the help of a computer, one can also check that in each case
va,f(a) < va,f(a)−1, proving that Theorem 2 is true for all a ≤ 81. In fact, for
the first, third and fifth intervals of a, va,f(a) < va,f(a)−1 follows from the proof
of Theorem 1 and for the other two intervals one can prove va,f(a) < va,f(a)−1

without too much trouble by looking at Xa,f(a) (mod p) for the primes p di-
viding f(a). So pen and paper should suffice and the help of a computer is not
even needed. We should point out, by the way, that f(a) is generally not equal
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to b(a). That is, for most a in the above range, there exists a b which is smaller
than f(a), such that already va,b < va,b−1. In any case, we may assume a ≥ 82.

For a ≥ 82, there exists a k ≥ 4 such that 3k < a ≤ 3k+1. We will partition
I := (3k, 3k+1] into the following five intervals:

I1 = (3k, 10 · 3k−2]

I2 = (10 · 3k−2, 11 · 3k−2]

I3 = (11 · 3k−2, 4 · 3k−1]

I4 = (4 · 3k−1, 37 · 3k−3]

I5 = (37 · 3k−3, 3k+1]

We now define f(a) as follows:

f(a) =



5 · 3k−1 if a ∈ I1
16 · 3k−2 if a ∈ I2
5 · 3k−1 if a ∈ I3
14 · 3k−2 if a ∈ I4
2 · 3k+1 if a ∈ I5

Again it is straight-forward to check that for all a ∈ I, f(a) is smaller than or
equal to 162

37 (a− 1), so it suffices to prove va,f(a) < va,f(a)−1.

For all a ∈ I5, the proof of Theorem 1 tells us that va,f(a) < va,f(a)−1. For a
in the other four intervals, Theorem 1 does not directly help, but we will follow
its proof quite closely with p = 3.

First, analogously to Lemma 2, we remark that in all cases La,f(a) = La,f(a)−1.

To see this, write f(a) = l · 3k1 with gcd(l, 3) = 1 and recall that La,f(a) =

lcm(f(a), La,f(a)−1). Since l|f(a) − l and 3k1 |f(a) − 3k1 and, in all cases, a ≤
min (f(a)− l, f(a)− 3k1), we indeed get La,f(a) = lcm(f(a), La,f(a)−1) = lcm(l ·
3k1 , La,f(a)−1) = La,f(a)−1. The main difference with the proof of Theorem 1
lies in the fact that Xa,f(a) is not just divisible by 3; we actually claim that 9
divides Xa,f(a) for all a in the first four intervals. We will then make use of the
following very slight extension of Theorem 1, the proof of which is basically the
same.

Theorem (Extension of Theorem 1). Let e and f > e be such that pe exactly
divides Xa,f(a)−1 and pf divides both Xa,f(a) and La,f(a). If gcd(l,Xa,f(a)−1) <

pf−e, then va,f(a) < va,f(a)−1.

To show that 9 does indeed divide Xa,f(a) for all a ∈
⋃

1≤i≤4

Ii, we use the

fact that if La,f(a) is exactly divisible by 3k1 , then
La,f(a)

i ≡ 0 (mod 9), unless

12



3k1−1 divides i. So to calculate Xa,f(a)) (mod 9) the only terms
La,f(a)

i that

we have to add are the ones where 3k1−1 divides i. Note that in all the four
intervals we consider, we have 3k < a < f(a) < 2 ·3k, so that k1 is at most k−1.

1. For a ∈ I1 we have chosen f(a) = 5 · 3k−1, so that La,f(a) is exactly

divisible by 3k−1. This means that, modulo 9, the only non-zero terms
in the sum for Xa,f(a) are the ones where i is divisible by 3k−2. We will
now calculate Xa,f(a) (mod 9) by rearranging those terms and then taking
consecutive terms together.

Xa,f(a) ≡
La,f(a)

10 · 3k−2
+

La,f(a)

11 · 3k−2
+
La,f(a)

4 · 3k−1
+

La,f(a)

13 · 3k−2
+

La,f(a)

14 · 3k−2
+
La,f(a)

5 · 3k−1
(mod 9)

≡
(
La,f(a)

10 · 3k−2
+

La,f(a)

11 · 3k−2

)
+

(
La,f(a)

4 · 3k−1
+
La,f(a)

5 · 3k−1

)
+

(
La,f(a)

13 · 3k−2
+

La,f(a)

14 · 3k−2

)
(mod 9)

≡
21La,f(a)

110 · 3k−2
+

9La,f(a)

20 · 3k−1
+

27La,f(a)

182 · 3k−2
(mod 9)

≡ 9

(
7La,f(a)

110 · 3k−1
+

La,f(a)

20 · 3k−1
+

9La,f(a)

182 · 3k−1

)
(mod 9)

≡ 0 (mod 9)

2. For a ∈ I2, we have chosen f(a) = 16 ·3k−2. And since a < 5 ·3k−1 < f(a),
La,f(a) is again exactly divisible by 3k−1.

Xa,f(a) ≡
La,f(a)

11 · 3k−2
+
La,f(a)

4 · 3k−1
+

La,f(a)

13 · 3k−2
+

La,f(a)

14 · 3k−2
+
La,f(a)

5 · 3k−1
+

La,f(a)

16 · 3k−2
(mod 9)

≡
(
La,f(a)

11 · 3k−2
+

La,f(a)

16 · 3k−2

)
+

(
La,f(a)

4 · 3k−1
+
La,f(a)

5 · 3k−1

)
+

(
La,f(a)

13 · 3k−2
+

La,f(a)

14 · 3k−2

)
(mod 9)

≡
27La,f(a)

176 · 3k−2
+

9La,f(a)

20 · 3k−1
+

27La,f(a)

182 · 3k−2
(mod 9)

≡ 9

(
9La,f(a)

176 · 3k−1
+

La,f(a)

20 · 3k−1
+

9La,f(a)

182 · 3k−1

)
(mod 9)

≡ 0 (mod 9)

3. The calculation for a ∈ I3 is very similar to the one for the first interval,
except that it does not contain the two terms corresponding to 10 · 3k−2

and 11 · 3k−2.
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Xa,f(a) ≡
La,f(a)

4 · 3k−1
+

La,f(a)

13 · 3k−2
+

La,f(a)

14 · 3k−2
+
La,f(a)

5 · 3k−1
(mod 9)

≡
9La,f(a)

20 · 3k−1
+

27La,f(a)

182 · 3k−2
(mod 9)

≡ 9

(
La,f(a)

20 · 3k−1
+

9La,f(a)

182 · 3k−1

)
(mod 9)

≡ 0 (mod 9)

4. Finally, for a ∈ I4 we have 4 · 3k−1 < a < f(a) < 5 · 3k−1, so La,f(a) is

exactly divisible by 3k−2 and
La,f(a)

i ≡ 0 (mod 9), unless 3k−3 divides i.

Xa,f(a) ≡
La,f(a)

37 · 3k−3
+

La,f(a)

38 · 3k−3
+

La,f(a)

13 · 3k−2
+

La,f(a)

40 · 3k−3
+

La,f(a)

41 · 3k−3
+

La,f(a)

14 · 3k−2
(mod 9)

≡
(
La,f(a)

37 · 3k−3
+

La,f(a)

38 · 3k−3

)
+

(
La,f(a)

13 · 3k−2
+

La,f(a)

14 · 3k−2

)
+

(
La,f(a)

40 · 3k−3
+

La,f(a)

41 · 3k−3

)
(mod 9)

≡
75La,f(a)

1406 · 3k−3
+

27La,f(a)

182 · 3k−2
+

81La,f(a)

1640 · 3k−3
(mod 9)

≡ 9

(
25La,f(a)

1406 · 3k−2
+

3La,f(a)

182 · 3k−2
+

27La,f(a)

1640 · 3k−2

)
(mod 9)

≡ 0 (mod 9)

For a ∈ I1∪I3∪I4, we see that 3 does not divide
La,f(a)
f(a) , while for a ∈ I2, 9 does

not divide
La,f(a)
f(a) . Since Xa,f(a)−1 = Xa,f(a) −

La,f(a)
f(a) , this implies (compare

with Lemma 3) that for a ∈ I1 ∪ I3 ∪ I4, 3 does not divide Xa,f(a)−1, while for
a ∈ I2, 9 does not divide Xa,f(a)−1.

Using the aforementioned extension of Theorem 1, it suffices to show that
gcd(l,Xa,f(a)−1) < 9 for a ∈ I1 ∪ I3 ∪ I4 and gcd(l,Xa,f(a)−1) < 3 for a ∈ I2.
Since l = 5, 16, 5, 14 for i = 1, 2, 3, 4 respectively, this at once follows from the
following well-known proposition.

Lemma 5. For all a and b ≥ a, Xa,b is odd.

Proof. Let m be such that La,b is exactly divisible by 2m, and let i ∈ [a, b] be
an integer divisible by 2m. Then we claim that this i is unique; if i′ 6= i is also
divisible by 2m, then i′ /∈ [a, b]. To see this, first note that if i′ is divisible by
2m, then either i′ ≤ i− 2m or i′ ≥ i+ 2m. Secondly note that, since i is exactly
divisible by 2m, it must be an odd multiple of 2m. This implies that i − 2m

and i + 2m are both even multiples of 2m, which means they are divisible by
2m+1. Since La,b is not divisible by 2m+1, this then shows that both i− 2m and
i+ 2m have to be outside of the interval [a, b], so i′ cannot be contained in [a, b]

either. Since we have shown that this i is unique, this implies Xa,b ≡ La,b
i ≡ 1

(mod 2).
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2.4 Exponential growth

In Section 2.2 we used a prime p > max(r, t) dividing Xn, for some n ∈ N. We
will now start to concern ourselves with proving the existence of such a p. In
order to do this, the first thing we need to find are lower bounds on the growth
of Xn itself. For whomever just wants an exponential lower bound that works
for all large enough n, we will prove that first. However, in this paper we would
love to end up with explicit bounds, and for that we need to work a bit harder,
which we shall do right after.

Lemma 6. For all n > 3t2 we have Ln > 2
n
t −2.

Proof. Let c1 be the smallest positive integer such that rc1 6= 0. Then

Ln ≥ lcm(c1, c1 + t, c1 + 2t, . . . , c1 +At)

≥ lcm

(
c1

gcd(c1, t)
,

c1 + t

gcd(c1, t)
,
c1 + 2t

gcd(c1, t)
, . . . ,

c1 +At

gcd(c1, t)

)
where A =

⌊(
n−c1
t

)⌋
> n

t − 2. By Theorem 1.1 from [6, p. 2] 1 we obtain

Ln ≥
(

c1
gcd(c1, t)

)(
t

gcd(c1, t)

)(
t

gcd(c1, t)
+ 1

)A
> 2

n
t −2

which holds when A > t
gcd(c1,t)

. And when n > 3t2, then A > n
t − 2 > 3t− 2 ≥

t ≥ t
gcd(c1,t)

.

We will now use Lemma 6 to prove lower bounds on |Xn|.

Lemma 7. There exists a constant c > 1 such that for all large enough integers
n, |Xn| > cn. In fact, any c smaller than 21/t will work.

Proof. By Lemma 6 Ln grows exponentially fast with base at least 21/t. It

therefore suffices to show that
∣∣∣XnLn ∣∣∣ cannot go to 0 exponentially fast. And

indeed, we will see that
∣∣∣XnLn ∣∣∣ > c0n

−t for large enough n and some constant c0.

Fix a residue class n (mod t) and note that
Xn+t

Ln+t
− Xn

Ln
=

n+t∑
i=n+1

ri
i

can be

written as f(n)
g(n) , where f(n) and g(n) are polynomials with integral coefficients

and degree at most t. If the leading coefficients of f(n) and g(n) have the same

sign, then f(n)
g(n) is positive for all large n, and if the leading coefficients of f(n)

and g(n) differ in sign, then f(n)
g(n) is negative for all large n. Either way, this

1With α = 1, their n is our A, their r is our t
gcd(c1,t)

and their u0 is our c1
gcd(c1,t)

.
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implies that the sequence Xn
Ln
, Xn+t

Ln+t
, Xn+2t

Ln+2t
, .. is monotonic, for large enough n. If

this sequence does not converge to zero, we are clearly done. If it does converge
to zero, we have (for some constant c′ and large enough n):

∣∣∣∣Xn

Ln

∣∣∣∣ =

∣∣∣∣Xn

Ln
− 0

∣∣∣∣
>

∣∣∣∣Xn

Ln
− Xn+t

Ln+t

∣∣∣∣
=

∣∣∣∣f(n)

g(n)

∣∣∣∣
> c′n−t

We can now take c0 to be the minimum value of c′ over all residue classes modulo
t, and we are done.

Like we mentioned before however, we would like to find explicit bounds. And
to that end, we introduce some notation. Define m = max(r+ 1, t+ 1) and note
that by the table in Section 2.3, we may assume m ≥ 4. Let z be the number
of primes strictly below m and define m̃ to be the smallest integer larger than
e6.7m with m̃ ≡ c1 (mod t) and such that m̃ has a prime divisor q0 larger than
e5m. Finally, we define the half-open interval I = [m̃−m3z+7, m̃+m3z+7) and
subdivide it into the sub-intervals J1 = [m̃−m3z+7, m̃) and J2 = [m̃, m̃+m3z+7).

We will prove that either |Xn| ≥ m2nz for all n ∈ J1 or |Xn| ≥ m2nz for
all n ∈ J2. Without loss of generality we may assume that there exists an
integer w ∈ J1 with |Xw| < wzm2. Let w + k be an integer in J2 and note
that m̃ − w ≤ k < m̃ − w + m3z+7 ≤ 2m3z+7. Our goal then is to prove that
|Xw+k| > (w + k)zm2, but we first need a few technical lemmas.

Lemma 8. For all m ≥ 2 we have z = π(m−1) <

(
m

log(m)

)
min

(
1.25, 1 +

3

2 log(m)

)
.

Lemma 9. For all m ≥ 1 we have m3z+7 < e5m.

Lemma 10. For all k ∈ N with w + k ∈ J2 we have the lower bound∣∣∣∣∣
w+k∑
i=w+1

ri
i

∣∣∣∣∣ ≥ 1

(w + k)k
.

Lemma 11. For all k ∈ N with w + k ∈ J2 the inequality

2
w+k
t −2

(w + k)k
− (w + k)kwz+1 > (w + k)z+1 holds.

Proof of Lemma 8. These are the statements of Theorem 1 and Corollary 2 of
[7, p. 69].
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Proof of Lemma 9. For m < 16 this can be checked by hand or computer. for
m ≥ 16 we get 7 ≤ z and Lemma 8 gives m3z+7 ≤ m4z < e5m.

Proof of Lemma 10. The sum

w+k∑
i=w+1

ri
i

can be written as a fraction with de-

nominator equal to the least common multiple of w+ 1, w+ 2, .., w+k, which is
at most their product, which is trivially upper bounded by (w+k)k. So to prove
that the estimate we want to show holds, it suffices to show that the left-hand
side is non-zero. Note that m̃ ≤ w+ k < m̃+m3z+7 < m̃+ e5m < m̃+ q0. So if

we multiply

w+k∑
i=w+1

ri
i

by the least common multiple of w+1, w+2, .., w+k, then

every term in the sum is divisible by q0, except for the term corresponding to
i = m̃. The term corresponding to i = m̃ is not divisible by q0 as 0 < |rm̃| < q0.
Since the sum is then not divisible by q0, it is certainly non-zero, which means
w+k∑
i=w+1

ri
i

is non-zero as well.

Proof of Lemma 11. We calculate, using the inequalities (w+k)
1
4 > 7t log(w+k)

and 4.1(w + k)
1
4 ≥ 4.1e5m > 4e5m + m > 2k + z + 1, which both follow from

the fact that w + k ≥ e6.7m ≥ e26.8.

w + k = (w + k)
1
4 (w + k)

3
4

> 7t log(w + k)(w + k)
3
4

> 3t+ 6t log(w + k)(w + k)
3
4

> 3t+
4.1t log(w + k)(w + k)

3
4

log(2)

When we subtract 2t from both sides, divide by t and then take 2 to the power
of both sides, we obtain:

2
w+k
t −2 > 2(w + k)4.1(w+k)

3
4

> (w + k)4.1(w+k)
3
4 + (w + k)4.1(w+k)

3
4

> (w + k)2k+z+1 + (w + k)k+z+1

> (w + k)2kwz+1 + (w + k)k+z+1

Dividing by (w + k)k and rearranging gives the desired inequality.

Combining all these lemmas lets us finish the proof that |Xw+k| > (w + k)z+1

for an arbitrary integer w + k ∈ J2. We calculate:
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|Xw+k| =

∣∣∣∣∣Lw+k

w+k∑
i=1

ri
i

∣∣∣∣∣
=

∣∣∣∣∣Lw+k

Lw
Xw + Lw+k

w+k∑
i=w+1

ri
i

∣∣∣∣∣
≥ Lw+k

∣∣∣∣∣
w+k∑
i=w+1

ri
i

∣∣∣∣∣− Lw+k

Lw
|Xw|

≥ 2
w+k
t −2

(w + k)k
− (w + k)kwz+1

≥ (w + k)z+1

Since n ∈ I implies n ≥ m̃ − m3z+7 > e7.6m − e5m > m2, we conclude the
following:

Lemma 12. Either |Xn| > m2nz for all n ∈ J1 = [m̃ −m3z+7, m̃) or |Xn| >
m2nz for all n ∈ J2 = [m̃, m̃+m3z+7).

2.5 Large prime divisors exist

With the notation of Lemma 12, set I0 = J1 if |Xn| ≥ m2nz holds true for all
n ∈ J1, or else set I0 = J2. This section will then be devoted to proving the
following theorem.

Theorem 3. There exists an integer n ∈ I0 for which Xn is divisible by a prime
larger than or equal to m.

The idea behind the proof of Theorem 3 is that for every prime p < m we search
for integers n for which the power of p that divides Xn is small. If we find an
n that simultaneously works for all p < m, we must conclude that Xn must
have a prime divisor larger than or equal to m. For this idea to work, we need
to take special care of the primes p < m for which ripe(t) = 0 for all i, where
e(t) = ep(t) is the largest power of p that divides t. It turns out that when p is
such a prime, then there is an infinite arithmetic progression of n for which the
power of p that divides Xn is small.

Recall that c1 was defined as the smallest positive integer for which rc1 6= 0 and
let Σ1,Σ2,Σ3 be defined as follows:

1. Σ1 = {p : p ≥ m}

2. Σ2 = {p : p < m, and ripe(t) 6= 0 for some i}

3. Σ3 = {p : p < m, and ripe(t) = 0 for all i}
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Note that with these definitions, proving Theorem 3 is equivalent to proving
that there exists an n ∈ I0 and a p ∈ Σ1 for which p|Xn. We will prove this by
finding an n ∈ I0 for which the largest divisor of Xn that is composed solely of
primes from Σ2 ∪ Σ3 is strictly smaller than |Xn| and let us start by focusing
our attention on the primes from Σ3. First note that, since ripe(t) = 0 for all i
when p ∈ Σ3, p must divide t. Because otherwise, e(t) would, by assumption,
equal 0, which would imply ri = 0 for all i. To state and prove the following
two lemmas, let us put fp = e(t) + e(rc1) for the moment.

Lemma 13. If p ∈ Σ3, then for all n ∈ N and all i ∈ N with i + tpfp ≤ n we

have
Lnri
i
≡
Lnri+tpfp

i+ tpfp
(mod pfp).

Proof. Clearly, ri = ri+tpfp . So when ri = 0, Lemma 13 follows immediately.

When ri 6= 0, let pα be the largest power of p that divides i and let pβ be the
largest power of p that divides Ln. Moreover, define L′n = Ln

pβ
, i′ = i

pα and

t′ = t
pα .

Lnri
i
−
Lnri+tpfp

i+ tpfp
= pβ−α

(
L′nri
i′
−
L′nri+tpfp

i′ + t′pfp

)
Now, i′ ≡ i′ + t′pfp (mod pfp) and this residue class is invertible, since p does
not divide i′. Let i∗ be its inverse. We then get that the right-hand side of the
above equation is congruent to pβ−α (L′nrii

∗ − L′nrii∗) ≡ 0 (mod pfp).

For p ∈ Σ3 we can use Lemma 13 to bound the largest power of p that divides
Xn, if n lies in a certain residue class.

Lemma 14. If p ∈ Σ3, then for all n ∈ N with n ≡ c1 (mod t3r2
c1), we have

that pfp does not divide Xn.

Proof. If we let n ≡ c1 (mod t3r2
c1), then a non-negative integer c2 exists such

that n = c1 + c2tp
2fp .

By Lemma 13 we know that
Lnri
i

and
Lnri+tpfp

i+ tpfp
differ by a multiple of pfp .

We can use this to split up the sum

n∑
i=1

Lnri
i

into parts that are all congruent

modulo pfp . Writing xj = c1 + jtpfp , this yields:
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Xn =

n∑
i=1

Lnri
i

=
Lnrc1
c1

+

c2p
fp−1∑
j=0

xj+1∑
i=xj+1

Lnri
i

≡ Lnrc1
c1

+ c2p
fp

x1∑
i=x0+1

Lnri
i

(mod pfp)

≡ Lnrc1
c1

(mod pfp)

6≡ 0 (mod pfp)

Remark: Lemma 14 implies that for n ≡ c1 (mod t3r2
c1), the largest divisor of

Xn composed solely of primes from Σ3 is at most:

∏
p∈Σ3

pfp

≤ trc1
< m2

Assume for the moment that n ∈ I0 and n ≡ c1 (mod t3r2
c1). Since |Xn| ≥ m2nz

by Lemma 12 and since the largest divisor of Xn composed solely of primes from
Σ3 is at most m2, it follows that if the largest divisor of Xn composed solely of
primes from Σ2 is smaller than nz, then Xn must have a prime divisor from Σ1,
which is exactly what we want.

So let p1 < p2 < . . . < py < m be the sequence of primes in Σ2 with y ≤ z
and let ei(x) denote the largest power of pi that divides x, where ei(0) = ∞.

With this notation, p
e1(Xn)
1 · · · pey(Xn)

y is the prime decomposition of the largest
divisor d(n) of Xn which consists only of primes contained in Σ2. The goal is to
find an n with d(n) < nz. We define m0 to be the smallest integer in I0 that is
congruent to c1 (mod t3r2

c1) and note that such an integer m0 ∈ I0 exists, since
|I0| = m3z+7 > m5 > t3r2

c1 . Moreover, if m′ is the smallest integer in I0, then
m0 ≤ m′ + t3r2

c1 .

We shall then construct a sequence m0 = n1 < n2 < . . . < ny+1 of inte-
gers lying in I0, such that all these nj are congruent to c1 (mod t3r2

c1) and
such that either d(nj) < nyj ≤ nzj for some j with 1 ≤ j ≤ y, or for ny+1

we have that p
ei(Xny+1

)

i < ny+1 holds for all i with 1 ≤ i ≤ y, implying
d(ny+1) < nyy+1 ≤ nzy+1.

20



Proof of Theorem 3. To start off, choose n1 = m0. Now, once we have defined
nj for some j with 1 ≤ j ≤ y, if d(nj) < nyj , we are done, Theorem 3 is
proved and we can stop. So for the rest of this proof we are free to assume that
d(nj) ≥ nyj holds for all j with 1 ≤ j ≤ y. This implies in particular that there

exists a σ(j) ∈ {1, 2, . . . , y} such that for pσ(j) we have p
eσ(j)(Xnj )

σ(j) ≥ nj .2 Then

let p
kj
σ(j) be the largest power of pσ(j) smaller than m3y+8−3j , set ñj+1 equal

to the smallest integer larger than nj such that eσ(j)(ñj+1)− eσ(j)(rñj+1
) ≥ kj

and set nj+1 equal to the smallest integer greater than or equal to ñj+1 that
lies in the residue class c1 (mod t3r2

c1). Further, define the half-open interval

Ij = [nj+1, nj+1 + p
kj
σ(j) −m

5).

Now, before we go on, notice that the smallest integer in Ij is nj+1 and not
nj . Although this might look confusing at first, think about it as follows. We
know that nj is such that Xnj is divisible by a large power of pσ(j). And ñj+1 is
then defined as also being divisible by some large (suitable) power of that same
prime pσ(j). So the j in Ij does not signal that Ij contains nj (because it does
not), but it means that Ij has something to do with pσ(j). And indeed, we shall
shortly prove that for integers n ∈ Ij , the largest power of pσ(j) that divides Xn

is small. But first we will prove a crucial property of the intervals Ij we defined.

Lemma 15. The intervals Ij form a decreasing sequence. That is, I0 ⊃ I1 ⊃
I2 ⊃ . . . ⊃ Iy.

Proof. Since Ij = [nj+1, nj+1 + p
kj
σ(j) −m

5) and m5 is just a constant indepen-

dent of j, we note that the statement Ij−1 ⊃ Ij for j ≥ 2 is equivalent to the
two inequalities

nj ≤ nj+1

nj+1 + p
kj
σ(j) ≤ nj + p

kj−1

σ(j−1)

While for I0 ⊃ I1 the second inequality gets replaced by n2 + pk1σ(1) − m5 ≤
m′+m3z+7, wherem′ is the smallest integer in I0. And since n1 = m0 ≤ m′+m5,
for I0 ⊃ I1 it suffices to prove n2 + pk1σ(1) ≤ n1 +m3z+7.

So we would like to get some upper and lower bounds on nj+1 and p
kj
σ(j), and

all we need to use are their definitions. First of all, as nj+1 is defined as the
smallest integer larger than or equal to ñj+1 for which something holds, while
ñj+1 is defined as the smallest integer larger than or equal to nj with some
property, the inequality nj ≤ nj+1 is trivial.

Secondly, for an upper bound on nj+1, we need a small lemma.

2Of course, there can be more than one such prime. Just pick, say, the smallest.
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Lemma 16. If p /∈ Σ3 and A ∈ N is such that gcd(A, t) = pe(t), then for every
i ∈ N, there is an i′ ∈ {iA, (i+ 1)A, . . . , (i+ t

pe(t)
− 1)A} for which ri′ 6= 0.

Proof. There are exactly t
pe(t)

distinct residue classes i′ (mod t) that are divisi-

ble by pe(t), and all of them are represented in {iA, (i+1)A, . . . , (i+ t
pe(t)
−1)A},

since i1A ≡ i2A (mod t) implies i1 ≡ i2 (mod t
pe(t)

). For at least one of them

we must have ri′ 6= 0 by the fact that p /∈ Σ3.

Now, the inequality nj+1 ≤ ñj+1 +m5 is trivial, by definition of nj+1. Further-
more, recall that ñj+1 is such that eσ(j)(ñj+1)−eσ(j)(rñj+1

) ≥ kj . And because

eσ(j)(rñj+1
) ≤

⌊
log(m−1)
log(pσ(j))

⌋
if rñj+1

6= 0, we have that ñj+1 is smaller than or

equal to g, where g is defined as the smallest integer larger than nj for which

eσ(j)(g) ≥
⌊

log(m−1)
log(pσ(j))

⌋
+ kj and rg 6= 0. Let x be equal to

⌊
log(m−1)
log(pσ(j))

⌋
+ kj and

let us call an integer h with eσ(j)(h) ≥ x and rh 6= 0 good for the moment. By
Lemma 16, for every i ∈ N there is an i′ ∈ {ipxσ(j), (i+1)pxσ(j), . . . , (i+m−1)pxσ(j)}
such that ri′ 6= 0. This implies that we can find a good integer in every interval

of mpxσ(j) ≤ (m− 1)mp
kj
σ(j) consecutive integers. In conclusion we can say that

nj+1 ≤ ñj+1 +m5 ≤ nj + (m− 1)mp
kj
σ(j) +m5.

Lastly, we look for bounds on p
kj
σ(j). Again we have a trivial bound p

kj
σ(j) <

m3y+8−3j because p
kj
σ(j) is defined as the largest power of pσ(j) smaller than

m3y+8−3j . On the other hand, there is always a power of pσ(j) between two

consecutive powers of m since pσ(j) < m. So p
kj
σ(j) must be larger than m3y+7−3j .

Putting all these inequalities together we can prove Ij−1 ⊃ Ij , for all j ∈
{2, . . . , y}:

nj+1 + p
kj
σ(j) < nj + (m− 1)mp

kj
σ(j) +m5 + p

kj
σ(j)

< nj + (m− 1)mp
kj
σ(j) + 2p

kj
σ(j)

≤ nj +m2p
kj
σ(j)

< nj +m3y+10−3j (1)

= nj +m3y+7−3(j−1)

< nj + p
kj−1

σ(j−1)

To prove I0 ⊃ I1, use the above reasoning up to and including (1) with j = 1.

Lemma 17. For all n ∈ Ij we have p
eσ(j)(Xn)

σ(j) < n.

Proof. Let n be any integer in Ij ⊂ I0 and we will take a look at Xn. Let us
first note that kj ≤ eσ(j)(Lñj+1

) = eσ(j)(Ln), where the first inequality follows
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from the fact that Lñj+1
is divisible by ñj+1 and therefore by p

kj
σ(j), and the

equality follows since n < ñj+1 + p
kj
σ(j). Now let us dissect Xn;

Xn = Ln

n∑
i=1

ri
i

=

nj∑
i=1

Lnri
i︸ ︷︷ ︸

S1

+

ñj+1−1∑
i=nj+1

Lnri
i︸ ︷︷ ︸

S2

+
Lnrñj+1

ñj+1
+

n∑
i=ñj+1+1

Lnri
i︸ ︷︷ ︸

S3

Using Lemma 9 and the definitions of m̃, J1 and J2 from Lemma 12, we have the
inequalities nj > e6.7m − e5m > e5m > |I0| ≥ n − nj , and this implies nj >

n
2 .

Now, by assumption, S1 is divisible by a power of pσ(j) that is at least as large
as nj >

n
2 , hence we obtain eσ(j)(S1) > eσ(j)(Ln)− 1 ≥ eσ(j)(Ln)− kj .

By the definition of ñj+1 we know that for every i in S2 we have eσ(j)(
Lnri
i ) ≥

eσ(j)(Ln)− kj + 1, while eσ(j)(
Lnrñj+1

ñj+1
) ≤ eσ(j)(Ln)− kj .

Finally, since eσ(j)(ñj+1) ≥ kj and n < ñj+1 + p
kj
σ(j), we have that for every i in

S3 that eσ(j)(i) < kj and so eσ(j)(
Lnri
i ) ≥ eσ(j)(Ln)− kj + 1 for all i in S3.

Combining the above estimates we see that there is exactly one term in the sum

for Xn that is not divisible by p
eσ(j)(Ln)−kj+1

σ(j) , and we conclude that the largest

power of pσ(j) that divides Xn is at most p
eσ(j)(Ln)−kj
σ(j) < n.

Now we may finish the proof of Theorem 3. First off, all the pσ(j) have to be

distinct, since p
eσ(i)(Xni )

σ(i) > ni, while Lemma 17 shows that if i > j, then

for all n ∈ Ii−1 ⊂ Ij it holds true that p
eσ(j)(Xnj )

σ(j) < n. In other words,

(σ(1), σ(2), . . . , σ(y)) is a permutation of (1, 2, . . . , y). Secondly, since our inter-

vals form a nesting sequence, for ny+1 ∈ Iy ⊂ Ij we have p
eσ(j)(Xny+1

)

σ(j) < ny+1

for all j with 1 ≤ j ≤ y. We conclude that d(ny+1) =

y∏
j=1

p
ej(Xny+1

)

j =

y∏
j=1

p
eσ(j)(Xny+1

)

σ(j) <

y∏
j=1

ny+1 = nyy+1 and the theorem is proved.

2.6 Explicit bounds for non-zero sequences and Dirichlet
characters

Let p be a prime bigger than m and let n = lpk be the smallest positive integer
for which Xn is divisible by p. If we could force gcd(l,Xa,b−1) to be smaller
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than p (as is the condition in Theorem 1), then we can straightaway combine
Theorems 1 and 3. We claim that this can be done when ri 6= 0 for all i with
gcd(i, t) = 1. Because in that case, it is not hard to see that l will always be
smaller than p, so the condition gcd(l,Xa,b−1) < p is fulfilled automatically.
Indeed, by Lemma 1 pk exactly divides Ln. But if l > p, then n = lpk > pk+1,
while rpk+1 6= 0, so pk+1 should divide Ln as well; contradiction.

Recall that in the proofs of Lemma 12 and Theorem 3, I0 was a sub-interval
of I, where I was defined as [m̃− 2m3z+7, m̃+m3z+7) and m̃ was the smallest
integer larger than e6.7m with m̃ ≡ c1 (mod t) and such that m̃ has a prime
divisor q0 larger than e5m. To find an upper bound on m̃ we use Theorem 1
in [9] which immediately implies that m̃ < e6.7m + m + me5m. Now Theorem
3 gives us an integer n < e6.7m + m + me5m + e5m < e6.71m for which Xn is
divisible by a prime p larger than m. Since p divides Xn, and Ln < e1.04n by
Theorem 12 in [7, p. 71], we can find an upper bound on p.

p ≤ |Xn|

= Ln

∣∣∣∣∣
n∑
i=1

ri
i

∣∣∣∣∣
≤ Ln

n∑
i=1

|ri|
i

< 3m log(n)Ln

< 21m2e1.04e6.71m

< ee
6.72m

Now we can bound the quantity max(a− 1, 2t− 1)lpλ that appears in Theorem
1 as follows:

max(a− 1, 2t− 1)lpλ < 2ampm−1

< 2ame(m−1)e6.72m

< aee
7m

And in conclusion we may say the following.

Theorem 4. If ri 6= 0 for all i with gcd(i, t) = 1, then for all a there exists a

b < ca for which va,b < va,b−1, where c = ee
7m

.

2.7 Bounding prime divisors

We could combine Theorems 1 and 3 in Section 2.6 when gcd(i, t) = 1 implies
ri 6= 0, because in that case we always have l < p. However, in general this
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is not true. Consider for example t = 2, r1 = 0, r2 = 1. Then p = 3 divides
X4 = 4(1

2 + 1
4 ) = 3 and n = l = 4 > 3 = p. Luckily, we do not need l < p to

invoke Theorem 1; all we need is gcd(l,Xa,b−1) < p. So we need to be able to
bound prime divisors of either l or Xa,b−1. In a sense we have done this already
for primes from Σ3 in Lemma 14. In this section we will do something similar
for the primes in Σ1 and Σ2 and we will find out how exactly this knowledge
can be used in the next section.

Lemma 18. If p ∈ Σ1, then there exists a positive integer cp < m with rcp 6= 0,
such that for all k ∈ N and all n ∈ N with cpp

λk ≤ n < (cp + 1)pλk, we have
that p does not divide Xn.

Proof. Assume p ∈ Σ1, and set cp = c1 < m, the smallest positive integer i for
which ri 6= 0. If we choose k arbitrary and n such that cpp

λk ≤ n < (cp+ 1)pλk,
then in the sum for Xn we have that p divides Lnri

i , unless pλk|i. But there is
only one such i for which ri 6= 0, and that is i = cpp

λk. Therefore everything
except for the term corresponding to that i vanishes modulo p. And we conclude

Xn ≡
Lnrcppλk

cppλk
6≡ 0 (mod p).

A nice way of looking at the statement of Lemma 18 is that Xn is not divisible
by p ∈ Σ1 if, when n is written in base p, the number of digits of n is congruent
to 1 (mod λ) and its first digit equals cp.

Lemma 19. If p ∈ Σ2, then there exists a positive integer cp < m3 with rcp 6= 0,
such that for all k ∈ N and all n ∈ N with cpp

λk ≤ n < (cp + 1)pλk, we have
that the largest power of p that divides Xn is smaller than m2.

Proof. The proof of this lemma is in spirit very similar to the proof of Lemma
18, but a few complications arise, since the ri are allowed to be divisible by p.
The core idea of choosing cp in such a way that, once we look modulo a power of
p, only one term in the sum for Xn will remain, is however completely the same.

So let us fix p ∈ Σ2 for this proof and define sequences {ei}i∈N and {fi}i∈N such
that pei exactly divides i and pfi exactly divides ri. We take fi =∞ if ri = 0.

Recall that e(t) is such that pe(t) divides t exactly, µp =
⌊

log(m)
log(p)

⌋
and note that

this implies that fi ≤ µp for all i for which ri 6= 0. Now we define cp to be the
smallest integer i for which the maximum of ei − fi is attained, where i runs
from 1 to tp2µp . That is, max

1≤i≤tp2µp
(ei − fi) ≤ ecp − fcp , with strict inequality

for all i < cp. Clearly cp ≤ tp2µp < m3 and we aim to show that this cp will do
the trick.

Firstly we can find a lower bound on ecp−fcp as follows. By Lemma 16 we have
that for at least one value of i ∈ {1, 2, . . . , t} it must hold that rip2µp 6= 0 and
using this i we have ecp − fcp ≥ eip2µp − fip2µp ≥ 2µp − µp = µp ≥ e(t). Since
ecp − fcp ≥ µp is positive, fcp 6=∞, so as promised rcp 6= 0.
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Now let us take a look at Xcp (mod px+1+fcp−ecp ), where x is such that px di-

vides Lcp exactly. We claim that the only term
Lcpri
i in the sum for Xcp which is

not divisible by px+1+fcp−ecp is the term corresponding to i = cp. Indeed, by the
definition of cp, for all i < cp we have that fi− ei ≥ 1 + fcp − ecp , implying that

the largest power of p that divides
Lcpri
i will be px+fi−ei ≥ px+1+fcp−ecp . On

the other hand, the largest power of p that divides
Lcprcp
cp

is equal to px+fcp−ecp .

In conclusion we can say that Xcp 6≡ 0 (mod px+1+fcp−ecp ).

Let k now be given and let n be such that cpp
λk ≤ n < (cp + 1)pλk. Then let

us take a look at Xn (mod px+1+fcp−ecp ) this time and note that Ln will now
be exactly divisible by px+λk. Again we claim that only one term Lnri

i does not

vanish modulo px+1+fcp−ecp , namely the term corresponding to i = cpp
λk. This

would give us that Xn is not divisible by px+1+fcp−ecp .

If i = cpp
λk, then ei = ecp+λk and we see that the largest power of p that divides

Lnri
i equals px+λk+fi−ei = px+fcp−ecp , if we can show that fi = fcppλk = fcp ,

which we will do down below.

When i ≤ n is different from cpp
λk, the largest power of p that divides Lnri

i will

still be px+λk+fi−ei . If this is to be at most px+fcp−ecp , then x+ λk+ fi− ei ≤
x + fcp − ecp or, equivalently, ei − λk − fi ≥ ecp − fcp , which will lead to a
contradiction. Since the right-hand side of this inequality is at least e(t), we
can define j = ip−λk < cp and note that pe(t)|j. Clearly ej = ei − λk and we
claim that fi = fj , analogous to the case where i = cpp

λk. Assuming this claim
for the moment, we then have ej − fj = ei − λk − fi ≥ ecp − fcp , contrary to
our definition of cp.

To prove our claim that fi and fj are equal, it suffices to show that rj =
ri = rjpλk . Or in other words, j ≡ jpλk (mod t). But this is equivalent to

(jp−e(t)) ≡ (jp−e(t))pλk (mod tp−e(t)), which is true as pλk ≡ 1 (mod tp−e(t))
by the property of the Carmichael function that d|t implies λ(d)|λ(t).

We have shown that Xn is not divisible by px+1+fcp−ecp , but what is x? Well,
px is the largest power of p that divides Lcp , so px ≤ cp ≤ tp2µp . Therefore Xn

is at most divisible by px+fcp−ecp ≤ px−µp ≤ tpµp < m2.

2.8 Diophantine approximation to the rescue

Like we mentioned in the previous section, we do not need l < p to invoke The-
orem 1; all we need is gcd(l,Xa,b−1) < p. The first thing we should note is that
we can prove the weaker estimate l < pt, since by Lemma 16 there exists at
least one i ∈ {1, 2, . . . , t} with ripk+1 6= 0. This implies that Lnrn

lpk
≡ 0 (mod p)

if l > pi, showing that if l > pt ≥ pi, then n = lpk cannot be the smallest
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integer for which p|Xn. So from now on we may safely assume p < l < pt. Now,
if we have a large prime power divisor qy of l such that the largest power of q
that divides Xa,b−1 is smaller than qy

t , then gcd(l,Xa,b−1) < l
t < p. So this will

be our plan; first make sure that l is large enough so that it has a large prime
power divisor, and then we define b such that Xa,b−1 is only divisible by a small
power of that prime.

The first part of the plan is the easy part, because we have already done all the
hard work in previous sections! Indeed, the m that appears in the statement
and proof of Theorem 3 can be taken to be any integer bigger than max(r, t),
because that is the only property of m that we used. In other words, we can
guarantee the existence of an integer n = lpk for which p|Xn, where p is some
prime larger than or equal to M and where M is any arbitrarily large integer.
We can use Lemmas 18 and 19 to then smartly choose this M .

In fact, we can choose M =
⌊
e3.4m

⌋
, so that if l ≥ p + 1 ≥ M + 1 > e3.4m,

then there are two possibilities; the first possibility is that l has a prime divisor
q ≥ m. In that case we claim that we are set if we can choose a large enough
b = npλk1 such that, for some k2, we have cqq

λk2 ≤ b−1 < (cq +1)qλk2 . Indeed,
Lemma 18 implies that q does not divide Xb−1, so gcd(l,Xb−1) ≤ l

q ≤
l
m < p

and we will prove shortly that this is sufficient.

The other possibility is that l only has prime divisors smaller than m. In that
case we claim that there must be a prime q such that if qy exactly divides l,
then qy > m3.

Lemma 20. If for every prime power divisor qy of l we have q < m and q ≤ m3,
then l < e3.4m.

Proof. Let l be an integer such that for all prime power divisors py of l we have

p < m and py ≤ m3. Then l ≤
∏
p<m

p

⌊
log(m3)
log(p)

⌋
and with a computer one can

check that for m < 105, this product is smaller than e3.4m. For m ≥ 105, we
can bound l as follows:
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l ≤
∏
p<m

p

⌊
log(m3)
log(p)

⌋

=
∏

p<m
3
4

p

⌊
log(m3)
log(p)

⌋ ∏
m

3
4≤p<m

p3

<
(
m3
)π(m

3
4 ) ∏
p<m

p3

<
(
m3
)( 1.174m

3
4

log(m
3
4 )

)
e3.12m

= e4.7m
3
4 +3.12m

< e3.4m

Where we used Lemma 8 and Theorem 12 in [7, p. 71], and where the last line
uses m ≥ 105.

So let q be a prime divisor of l such that qy > m3. First we remark that this
implies that q ∈ Σ2, as q ∈ Σ3 would imply rn = 0, which contradicts the as-
sumption that n is the smallest integer for which p|Xn. Now we can use Lemma
19 which gives us that if cqq

λk2 ≤ b−1 < (cq +1)qλk2 , then the largest power of
q that divides Xb−1, let us call it qx for the moment, is smaller than m2. And

then gcd(l,Xb−1) ≤ lqx

qy < lm2

m3 = l
m < p. In both cases a prime q exists so that

with cqq
λk2 ≤ b− 1 < (cq + 1)qλk2 we guarantee that gcd(l,Xb−1) < p.

The astute reader might point out that the condition in Theorem 1 is
gcd(l,Xa,b−1) < p which is different from gcd(l,Xb−1) < p. So it looks like we
only guarantee something about the factorization of Xb−1 instead of Xa,b−1.
However, we claim that with b − 1 ∈ [cqq

λk2 , (cq + 1)qλk2), if qλk2 ≥ am2,
then Xa,b−1 ≡ Xb−1 (mod qx+1), which is non-zero by definition. First of all
we claim that La,b−1 is equal to Lb−1. On the one hand we trivially have
La,b−1|Lb−1. For the other direction, since b − 1 ≥ am2 > am, every integer i
smaller than a with ri 6= 0 has a multiple of the form (jt + 1)i between a and
b − 1, with r(jt+1)i = ri 6= 0. So if i divides Lb−1, it will also divide La,b−1,
proving Lb−1|La,b−1 and therefore La,b−1 = Lb−1.

Secondly Lb−1 is divisible by qλk2 since rcqqλk2 = rcq 6= 0, by Lemmas 18 and 19.

Therefore the only terms Lb−1ri
i in the sum for Xb−1 that are non-zero modulo

qx+1 are the ones where i is divisible by qλk2−x. The latter quantity is bigger
than a as we assumed qλk2 ≥ am2 and qx < m2. Since all terms that are non-
zero modulo qx+1 are bigger than a we indeed have Xa,b−1 ≡ Xb−1 (mod qx+1).
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In summary, if n = lpk with l > p is such that Xn is divisible by a prime
p > e3.4m (and n is the smallest positive integer i for which p divides Xi) and
q is a prime divisor of l such that either q ≥ m or qy ≥ m3, we then have
concluded the following.

Lemma 21. If k1 and k2 are positive integers such that with b = npλk1 the string
of inequalities cqam

2 ≤ cqqλk2 < b < (cq + 1)qλk2 holds, then va,b < va,b−1.

The numbers n, l, p, k and q will now all be fixed for the rest of this section.
All we have to do is find k1 and k2 so that the above string of inequalities is
satisfied. By looking at the inequalities cqq

λk2 < npλk1 < (cq + 1)qλk2 and
taking logarithms, we see that we end up with a linear form in logarithms, so
it is no wonder that bounds on such linear forms will turn out to be helpful.

Lemma 22. There exist positive integers b1 and b2 with b2 < 2 log(q)m4 such
that

|b2 log(p)− b1 log(q)| = ε <
1

2m4

Proof. Dirichlet’s Approximation Theorem states that for any positive real
number ζ > 0 and any N ∈ N, there exist positive integers b1 and b2 with

b2 ≤ N such that |b2ζ − b1| < 1
N+1 . Now we apply this with ζ = log(p)

log(q) and

N = b2 log(q)m4c to obtain |b2 log(p)
log(q) − b1| <

1
2 log(q)m4 . Multiplying both sides

of the inequality by log(q) finishes the proof.

Lemma 23. Let b1, b2 and ε be as in Lemma 22. Let γ > 0 be any positive real
number and set C =

⌈
γ
ε

⌉
. Then, if b2 log(p)− b1 log(q) > 0, we have

0 ≤ Cb2 log(p)− Cb1 log(q)− γ < 1

2m4

while if b2 log(p)− b1 log(q) < 0, we have

−1

2m4
< Cb2 log(p)− Cb1 log(q) + γ ≤ 0

Proof. Assume b2 log(p) − b1 log(q) > 0. The other case can be proven in an
analogous manner. Then, on the one hand:

Cb2 log(p)− Cb1 log(q)− γ = C(b2 log(p)− b1 log(q))− γ

=
(⌈γ

ε

⌉)
ε− γ

≥
(γ
ε

)
ε− γ

= 0

while on the other hand:
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Cb2 log(p)− Cb1 log(q)− γ = C(b2 log(p)− b1 log(q))− γ

=
(⌈γ

ε

⌉)
ε− γ

<
(γ
ε

+ 1
)
ε− γ

= ε

<
1

2m4

Lemma 24. Let D ∈ N be any integer bigger than or equal to k+2 and assume
that we choose γ in Lemma 23, equal to

γ = ±
(

log(cq) + log(cq + 1)− 2 log(n)

2λ

)
+D log(p)

where plus or minus depends on whether b2 log(p)− b1 log(q) is positive or neg-
ative, respectively. Then γ > 0 and cqq

λk2 < npλk1 < (cq + 1)qλk2 holds, with
k2 = Cb1 and k1 = Cb2 −D.

Proof. Let us first prove that γ is positive. We have to consider the cases where
b2 log(p)− b1 log(q) is bigger or smaller than 0 separately.

Case I. b2 log(p)− b1 log(q) > 0.

γ =
log(cq) + log(cq + 1)− 2 log(n)

2λ
+D log(p)

> D log(p)− log(n)

= D log(p)− log(lpk)

> D log(p)− (k + 2) log(p)

≥ 0

Case II. b2 log(p)− b1 log(q) < 0.

γ =
2 log(n)− log(cq)− log(cq + 1)

2λ
+D log(p)

> D log(p)− log(cq + 1)

≥ D log(p)− log(m3)

> 3.4Dm− 3 log(m)

> 0

To prove that cqq
λCb1 < npλ(Cb2−D) < (cq + 1)qλCb1 holds, we also have to

handle the two cases separately, but these proofs will be completely analogous
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to each other. So let us only do the first one and leave the second one as exercise
for the reader. Assume b2 log(p) − b1 log(q) > 0 and let us first try to find an
upper bound for npλk1 , taking Lemma 23 as a starting point.

Cb2 log(p)− Cb1 log(q)− γ < 1

2m4

<
log(cq + 1)− log(cq)

2λ

Here we used λ < m and the fact that log(x)− log(x−1) > 1
x with x = cq +1 ≤

m3. Now we multiply by λ, apply the definition of γ, rearrange and exponentiate
to finish.

λ(Cb2 −D) log(p) + log(n) < λCb1 log(q) + log(cq + 1)

npλ(Cb2−D) < (cq + 1)qλCb1

For a lower bound on npλk1 , we use similar ideas.

Cb2 log(p)− Cb1 log(q)− γ ≥ 0

>
log(cq)− log(cq + 1)

2λ

And once more we multiply by λ, use the definition of γ, rearrange and expo-
nentiate.

λ(Cb2 −D) log(p) + log(n) > λCb1 log(q) + log(cq)

npλ(Cb2−D) > cqq
λCb1

Corollary 2. For every a there are infinitely many b for which va,b < va,b−1.

Proof. The only inequality from Lemma 21 that we have not checked yet is the
inequality cqam

2 ≤ cqqλk2 . Choose D from Lemma 24 to be any integer bigger
than am2 + k + 2. Then:

cqq
λk2 = cqq

λCb1

= cqq
λ

⌈γ
ε

⌉
b1

> cqq
γ

> cqq
am2

> cqam
2

31



2.9 Explicit bounds for all sequences

We are now in a position to prove our final theorem on upper bounds.

Theorem 5. For all a there exists a b < ca for which va,b < va,b−1, where

c = ee
e10m

.

Proof. To find an upper bound for this constant c, let us recall the chain of
dependency. We forced p to be larger than or equal to M =

⌊
e3.4m

⌋
and, with

m replaced by M , we claim that Theorem 3 and Lemma 12 are still true when
m̃ is instead chosen to be the smallest integer larger than e3.9M with m̃ ≡ c1
(mod t) and such that m̃ has a prime divisor q0 larger than e3.5M .

To demonstrate this claim, first note that with the use of Lemma 8 it can be
shown that Lemma 9 is still true with m replaced by M , z the number of primes
strictly below M , and 5 replaced by 3.5. Indeed, since M > 105, Lemma 8 im-
plies 3z + 7 < 3.5M

log(M) , Moreover, with the aforementioned replacements, the

statements and proofs of Lemma 10 and 11 still go through verbatim by replac-
ing every occurrence of 5 by 3.5, every occurrence of 6.7 by 3.9, 26.8 by 100 and
every occurrence of 1

4 and 3
4 by 1

10 and 9
10 respectively.

With these slightly improved constants, we obtain n < e3.9M +M +Me3.5M +
e3.5M < e4M < e4e3.4m < e4e4m , analogously to how we upper bounded n in
Section 2.6. For pm we also get via similar reasoning pm < m(e3.9M + M +

Me3.5M + e3.5M ) < e4e3.4m < e4e4m .

Using the bound for pm, our number b can be upper bounded by (cq+1)qλCb1 <

m3qmCb1 < (pm)2mCb1 < e8mCb1e
4m

, where the first inequality follows from
Lemmas 18 and 19 and the second inequality follows from q ≤ l < pt < pm as
explained at the start of Section 2.8. So we still need to find upper bounds for
C and b1.

As for b1, Lemma 22 gives us that it is smaller than b2 log(p)
log(q) +1 < 2m4 log(p)+1 <

2m4 log(pm) < 8m4e4m < e6m. And finally, we would like to find a bound for
C =

⌈
γ
ε

⌉
< (γ+1)ε−1. We therefore need to bound both γ and ε−1 and starting

with ε−1, we use an effective version of Baker’s Theorem on a lower bound on
linear forms in logarithms.

Lemma 25. Let b1, b2 and ε be as in Lemma 22. Then we have the lower bound

log(ε) = log (|b2 log(p)− b1 log(q)|) > −e9.9m

Proof. We need to take a look at Corollary 2 of [8, p. 288] and the notation they
use. In their notation, α2 equals our p, while α1 is our prime q. Furthermore,
b1 is our b1 and b2 = b2. So D, which is defined in Section 2 of that paper as
[Q(α1, α2) : Q]/[R(α1, α2) : R], simply equals 1. We can let log(A1) and log(A2)
be log(q) and log(p) respectively, which makes their b′ = b1

D log(A2) + b2
D log(A1) in
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our case bounded by 2 b2
log q + 1 < 4m4 + 1, so that log(b′) + 0.14 < log(4m4 +

1) + 0.14 < 6 log(m). And now we may apply Corollary 2 of [8];

log(|b2 log(p)− b1 log(q)|) ≥ −24.34

(
max

{
6 log(m), 21,

1

2

})2

log(q) log(p)

= −876.24 max
(
log2(m), 12.25

)
log(p) log(q)

> −876.24 max

(
12.25 log2(m)

log2(4)
, 12.25

)
log(pm) log(pm)

> −5586 log2(m) log2(pm)

> −89376 log2(m)e6.8m

> −e9.9m

For γ = γD, we use its definition as it was given in Lemma 24;

γ + 1 = 1±
(

log(cq) + log(cq + 1)− 2 log(n)

2λ

)
+D log(p)

< 1 + max
(
log(cq + 1), log(n)

)
+D log(p)

< 1 + max
(
log(m3), 4e4m

)
+ 4De4m

= 1 + 4(D + 1)e4m

< De5m

Here, by Lemma 24 and the proof of Corollary 2, we have to choose D bigger
than or equal to k + 2 and such that qλCb1 ≥ am2, where C depends on γ,
which in turn depends on D. If D = k + 2 already ensures that qλCb1 ≥ am2,
then we choose D = k + 2 and, by using k < λ ≤ m − 2 (otherwise p|Xn′

with n′ = np−λ, contradicting the definition of n), the upper bound on γ + 1
simplifies to γ + 1 < De5m ≤ me5m < e6m. In this case we have:

b(a) ≤ b

< e8mCb1e
4m

< e8mee
9.9m

e6me6me4m

< ee
17mee

9.9m

< ee
e10m

= c ≤ ca

In the other case we have to choose D bigger than k + 2 to make sure that
qλCb1 ≥ am2 holds. So then we can choose D in such a way that qλCb1 =

qλb1dγDε
−1e ≥ am2 > qλb1dγD−1ε

−1e and we get:
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b(a) ≤ b

< (cq + 1)qλb1dγDε
−1e

= (cq + 1)qλb1dγD−1ε
−1eqλb1(dγDε

−1e−dγD−1ε
−1e)

< am5qλb1ε
−1((γD+1)−γD−1)

< a(pm)6λb1ε
−1((γD+1)−γD−1)

< ae24λb1ε
−1((γD+1)−γD−1)e4m

< ae96me6mee
9.9m

e4me4m

< aee
16mee

9.9m

< aee
10m

= ca

34



3 Lower bounds

3.1 A logarithmic lower bound

So far in this paper, we have proven the upper bound b(a) < ca, for some
constant c. Or, in other words, we can upper bound the difference b(a)− a by
a linear function. In this section we will look at lower bounds, and prove that
this difference is at least logarithmic. That is, there exists an absolute constant
c1 such that b(a) > a+ c1 log(a) holds for all large enough a. In Section 3.2 we
will then show that this lower bound is close to optimal when ri 6= 0 for all i,
as there exists an absolute constant c2 such that for infinitely many a we have
b(a) < a + c2 log(a). In Section 3.3 we will then improve upon these constants
c1 and c2 in the case where ri = 1 for all i.

Theorem 6. lim inf
a→∞

b(a)− a
log a

≥ 1

2
.

Proof. If rb = 0, then for sure b 6= b(a). So let ε be a given small positive
constant and let b be any integer with rb 6= 0 such that a < b < a+( 1

2 − ε) log a.
Then we shall see that va,b > va,b−1, assuming a is large enough. To achieve

this, recall that va,b =
La,b
ga,b

, where ga,b = gcd(La,b, Xa,b).

So va,b > va,b−1 precisely when
La,b
La,b−1

>
ga,b
ga,b−1

. This inequality readily follows

by combining the following two lemmas.

Lemma 26.
La,b
La,b−1

> b1/2+ε+o(1).

Lemma 27.
ga,b
ga,b−1

< b1/2−ε+o(1).

Proof of Lemma 26. A straightforward calculation:
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La,b−1

La,b
=

La,b−1

lcm(La,b−1, b)

=
La,b−1 gcd(La,b−1, b)

bLa,b−1

= b−1 gcd(La,b−1, b)

≤ b−1
∏

pk≤b−a<pk+1

pk a prime power

gcd(pk, b)

≤ b−1
∏

pk≤b−a<pk+1

pk a prime power

pk

≤ b−1e( 1
2−ε+o(1)) log a (2)

= b−1a
1
2−ε+o(1)

= b−1/2−ε+o(1)

Where (2) is obtained as a consequence of PNT.

Proof of Lemma 27. Let p be any prime and let e(n) = ep(n) denote the largest
power of p that divides n. Furthermore, write b = xyz such that for all primes p
dividing x we have ep(b) > ep(La,b−1)+ep(rb), for all primes p dividing y we have
ep(La,b−1) < ep(b) ≤ ep(La,b−1) + ep(rb), and p|z implies ep(b) ≤ ep(La,b−1).
Then Lemma 26 shows that xy ≥ b1/2+ε+o(1), which implies z ≤ b1/2−ε+o(1).

So if we now fix a prime p, then our goal is to find a good upper bound for
e(ga,b). We have to distinguish between three different cases.

Case I. p|x.
Then e(La,b) = e(b) > e(La,b−1) + e(rb), so

Xa,b =
La,b
La,b−1

Xa,b−1 +
La,brb
b

≡ La,brb
b

(mod pe(rb)+1)

6≡ 0 (mod pe(rb)+1)

And this implies e(ga,b) ≤ e(rb).

Case II. p|y.
Let us first remark that the definition of y implies that in this case we have
e(rb) ≥ 1, or equivalently, p|rb. Moreover, if i ∈ [a, b − 1] is such that e(i) =
e(La,b−1), then both i and b are divisible by pe(i), which means pe(i) ≤ b− i <
( 1

2 − ε) log(a) < log(a), hence we conclude:
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e(ga,b) ≤ e(La,b)
= e(b)

≤ e(La,b−1) + e(rb)

= e(i) + e(rb)

<
log log(a)

log(p)
+ e(rb)

Case III. p|z or p - b.
Our goal in this case is to prove the upper bound e(ga,b) ≤ e(ga,b−1) + e(z),
so without loss of generality we may assume that e(ga,b) > e(ga,b−1). Note
that e(La,b) = e(La,b−1), so if e(ga,b) > e(ga,b−1), then e(ga,b−1) = e(Xa,b−1).

Also note that e(Xa,b) = e
(

La,b
La,b−1

Xa,b−1 +
La,brb
b

)
> e(Xa,b−1) is only possible

when e
(

La,b
La,b−1

Xa,b−1

)
= e

(
La,brb
b

)
while, in this case, e(b) = e(z). Therefore,

e(ga,b)− e(z) = e(ga,b)− e(b)
≤ e(La,b) + e(rb)− e(b)

= e

(
La,brb
b

)
= e

(
La,b
La,b−1

Xa,b−1

)
= e(Xa,b−1)

= e(ga,b−1)

Let us take all three cases together and calculate.

ga,b
ga,b−1

=
∏
p

pep(ga,b)−ep(ga,b−1)

≤
∏
p|x

pep(ga,b)
∏
p|y

pep(ga,b)
∏

p|z or p-b

pep(ga,b)−ep(ga,b−1)

≤
∏
p|x

pep(rb)
∏
p|y

p
log log(a)

log(p)
+ep(rb)

∏
p|z or p-b

pep(z)

≤
∏
p|rb

p
log log(a)

log(p)
+ep(rb)

∏
p|z

pep(z)

= rbz
∏
p|rb

log(a)

< rbz log(a)rb

≤ b1/2−ε+o(1)
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3.2 A sequence with logarithmic difference

As it turns out, the lower bound from the previous section is close to sharp, at
least when ri 6= 0 for all i.

Theorem 7. If ri 6= 0 for all i, then lim inf
a→∞

b(a)− a
log a

≤ 2.

Proof. By our discussion at the start of Section 2.6, when the ri are non-zero
there exists a prime p dividing Xn which is bigger than max(|r1|, |r2|, . . . , |rt|, t).
Here, n = lpk is the smallest i ∈ N for which p divides Xi and l is such that
1 < l < p. Since l < p, we see that pk exactly divides Ln, and therefore Lnri

i 6≡ 0
(mod p) if, and only if, pk|i. Writing Xn as a sum modulo p, we obtain:

Xn = Ln

n∑
i=1

ri
i

≡ Ln
l∑
i=1

ripk

ipk
(mod p)

≡ Ln
pk

l∑
i=1

ripk

i
(mod p)

≡ 0 (mod p)

Let k1 now be large enough such that for every invertible residue class h (mod pt)
we have the Bertrand’s Postulate type result that, for the interval
I = ( 1

2 (l − 1)pλk1+k, (l − 1)pλk1+k), there is a prime q ∈ I for which q ≡ h
(mod pt). The existence of such a q is of course guaranteed by PNT.

Assume that the product of all primes in I is congruent to h (mod pt) and let

q̃ ∈ I be a prime with q̃ ≡ h (mod pt). Then we define Q = q̃−1
∏
q∈I

q, where

the product is taken over all primes q ∈ I. We now set b = lpλk1+kQ and
a = b − (l − 1)pλk1+k = pλk1+k(lQ− l + 1). Note that lQ ≡ l (mod pt) by the
definition of q̃.

By PNT we see that b = exp[((l − 1)pλk1+k)( 1
2 + o(1))], so b − a = (2 +

o(1)) log(b) = (2 + o(1)) log(a). Therefore, Theorem 7 would follow if we could
prove va,b < va,b−1, and this is exactly our plan.

To show this, first observe that every prime power divisor of b is smaller than
or equal to (l − 1)pλk1+k. And since b − a = (l − 1)pλk1+k, every prime power
divisor of b is also a prime power divisor of some number between a and b − 1
(inclusive). This implies that La,b = La,b−1. So to prove va,b < va,b−1, it suffices
to show that ga,b > ga,b−1, and our proof will be reminiscent of our proof of
Theorem 1.
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First, analogous to Lemma 3, we claim that p dividesXa,b while p does not divide

Xa,b−1. Since La,b−1 is exactly divisible by pλk1+k, we have that
La,b−1ri

i 6≡ 0
(mod p) if, and only if, pλk1+k|i. And because pλk1+k|b, we remark Xa,b =

Xa,b−1 +
La,brb
b 6≡ Xa,b−1 (mod p) implying that at most one of Xa,b−1 and

Xa,b can be divisible by p. Looking at Xa,b (mod p) now proves our claim;

Xa,b = La,b

b∑
i=a

ri
i

≡ La,b
pλk1+k

l∑
i=1

rpλk1+k(lQ−l+i)

lQ− l + i
(mod p)

≡ La,b
pλk1+k

l∑
i=1

ripk

i
(mod p)

≡ 0 (mod p)

Secondly, for a prime q dividing Q, q does not divide Xa,b−1. Indeed, as both
b− 2q and b are outside the interval [a, b− 1], there is only term in the sum for
Xa,b−1 that does not vanish modulo q, and that is the term corresponding to
i = b− q.

For our final calculation of ga,b we can almost copy our calculation of ga,b at the
end of Theorem 1 verbatim, but now with b = lpλk1+kQ, instead of b = lpλk1+k.
This results in ga,b ≥ p

gcd(lQ,Xa,b−1)ga,b−1, which proves the theorem as l < p

and gcd(Q,Xa,b−1) = 1.

To deal with the problems that arise in the case where some of the ri are equal
to zero, recall that for a prime divisor q of Q, q divides exactly one term in
the interval [a, b − 1], namely i = b − q. Therefore, q is a divisor of La,b−1

but not a divisor of Xa,b−1. However, when rb−q = 0, then q no longer divides
La,b−1, which would be a problem because then we would have La,b > La,b−1.
A possible way to work around this is to only choose certain primes q which are
congruent to 1 (mod t), and such that the interval not only contains b− q, but
b−2q, b−3q, . . . , b−dq as well, where d is the smallest positive integer for which
rb−dq = rn−d 6= 0. Because rb−dq 6= 0, we guarantee that q divides La,b−1 and
since d was the smallest such integer, we still get that there is only one term
in the sum for Xa,b−1 that does not vanish modulo q, implying that q does not
divide Xa,b−1. Furthermore, since rb−tq = rb = rn 6= 0, we see that d is smaller
than or equal to t.

With the usual definitions for n, l, p, k, λ and with d defined as the smallest pos-
itive integer for which rn−d 6= 0, let k1 be a large integer and let S be the set
of primes q that are contained in the interval ( 1

d+1 (l− 1)pλk1+k, 1
d (l− 1)pλk1+k)
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and for which q ≡ 1 (mod t). Assume
∏
q∈S

q ≡ h (mod p) and let q̃ ∈ S be

such that q̃ ≡ h (mod p). Just like before, such a q̃ exists whenever k1 is large
enough, by PNT.

Now we define Q = q̃−1
∏
q∈S

q, set b = lpλk1+kQ and set a = b− (l− 1)pλk1+k =

pλk1+k(lQ − l + 1). By arguments that are analogous and mostly identical
to our arguments in the ri 6= 0 case, we obtain va,b−1 ≥ p

gcd(lQ,Xa,b−1)va,b =
p

gcd(l,Xa,b−1)va,b while, once more applying PNT, we have that the difference

b − a has order (d(d + 1)ϕ(t) + o(1)) log(a), where ϕ(t) is Euler’s totient func-
tion. So if we may assume l < p, then we can conclude that we can generalize
Theorem 7 to more sequences of ri, at the cost of increasing our upper bound
on the lower limit. For example, as explained at the start of Section 2.6, we
know that l < p always holds in the case that ri 6= 0 for all i with gcd(i, t) = 1,
so we can generalize Theorem 7 to that case, if we can find an upper bound on
d. As mentioned before, d is in general smaller than or equal to t. But in this
case where ri 6= 0 for all i coprime to t, we can do a bit better.

The Jacobstahl function j(t) is defined as the smallest positive integer j such
that every sequence of j consecutive integers contains an integer coprime to t.
In particular, in the sequence n− j(t), n− j(t) + 1, . . . , n− 1, there is an integer
i which is coprime with t. Since i being coprime to t implies ri 6= 0, we conclude
d ≤ j(t). By a result of Iwaniec ([13]) there exists an absolute constant c such
that j(t) < c log(t)2, which gives the following bound.

Theorem 8. There exists an absolute constant c such that, if ri 6= 0 for all i

with gcd(i, t) = 1, then lim inf
a→∞

b(a)− a
log a

≤ c log(t)4ϕ(t).

Using similar arguments it seems likely that one could reduce the bound on
this lower limit, by letting Q be the product of a larger set of primes. For
example, when gcd(d, t) = 1, then one can use the original interval I = ( 1

2 (l −
1)pλk1+k, (l − 1)pλk1+k) again, and choose q ∈ I with q ≡ d (mod t). This
would already reduce the upper bound in Theorem 8 to 2ϕ(t). Furthermore,
it is conceivable that we can employ techniques introduced in Sections 2.7, 2.8
and 2.9 to ensure gcd(l,Xa,b−1) < p holds, so that we can prove the finiteness

of lim inf
a→∞

(
b(a)−a
log a

)
in full generality.

3.3 Improvements in the classical case

When r1 = t = 1, we can strengthen Theorems 6 and 7 a bit.

Theorem 9. If ri = 1 for all i, then 0.54 < lim inf
a→∞

b(a)− a
log a

< 0.61.
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Proof. In order to show these tighter bounds on the lower limit, divisibility

properties of the polynomials fd(x) =

d∑
i=0

d∏
j=0
j 6=i

(x− j) turn out to be important,

so we define δ(fd) to be the density of primes p such that fd(x) ≡ 0 (mod p) is
solvable. By a (slight extension of a) theorem of Frobenius, which we will meet
shortly (see Lemma 34) and which is a consequence of the more well-known
Chebotarev’s density theorem, this density exists and one can in principle cal-

culate it. With c =

∞∑
d=1

δ(fd)

d(d+ 1)
we will first prove 1

1+c ≤ lim inf
a→∞

(
b(a)−a
log a

)
≤ 1

2c ,

and later on show 0.82 < c < 0.85, from which 0.54 < 1
1+c and 1

2c < 0.61 follow.

Let us start with the upper bound and prove that the lower limit is at most 1
2c .

To prove this upper bound, let ε > 0 be small and assume n is a large integer.
For 1 ≤ d ≤

√
n − 1, define Sd to be the set of primes p with n

d+1 < p ≤ n
d

such that fd(x) ≡ 0 (mod p) is solvable and define δn(fd) = |Sd|π(n)−1. If

we fix d and let n go to infinity, then we claim that δn(fd) → δ(fd)
d(d+1) . This is

seen by combining that, on the one hand, |Sd|
(
π(nd )− π( n

d+1 )
)−1

converges to

δ(fd) by Frobenius’ theorem, while on the other hand
(
π(nd )− π( n

d+1 )
)
π(n)−1

converges to 1
d(d+1) by PNT. Now choose n to be a large enough integer such

that

b√nc−1∑
d=1

δn(fd) > c− ε

2
.

Lemma 28. For a prime p ∈ Sd, let xp be such that fd(xp) ≡ 0 (mod p). Then
for all i with 0 ≤ i ≤ d we have xp 6≡ i (mod p).

Proof. By contradiction; assume xp ≡ i (mod p) for some i with 0 ≤ i ≤ d.

Then 0 ≡ fd(xp) ≡
d∏
j=0
j 6=i

(xp − j) (mod p) and by Euclid’s lemma xp − j ≡ 0

(mod p) for some j 6= i, which gives i ≡ j (mod p), which is impossible as
0 < |i− j| ≤ d < n

d+1 < p.

Let q be the largest prime in S2, so that we have f2(xq) = 3x2
q − 6xq + 2 ≡

0 (mod q). Then x′q = −xq + 2 is a root of f2(x) (mod q) as well, since
f2(x′q) = 3(−xq + 2)2 − 6(−xq + 2) + 2 = 3x2

q − 6xq + 2 ≡ 0 (mod q). Moreover
x′q = −xq + 2 6≡ xq (mod q) as otherwise xq ≡ 1 (mod q), which contradicts
Lemma 28. So xq and x′q are two distinct roots of f2(x) (mod q).

We should point out that later on (as part of the proof of Lemma 35) we will
prove that fd(x − l) is an even function whenever d = 2l is even. And from
this it follows that whenever p divides fd(xp), p will divide fd(−xp + d) as well,
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while, again by Lemma 28, xp 6≡ −xp + d (mod p). Apart from p = q, in this
paper we will not make use of the fact that for even d and all p ∈ Sd, fd(x) ≡ 0
(mod p) has at least two solutions, but it might prove useful if one wants to
improve upon our bounds even further.

Anyway, let S be the union of all Sd over all d with 1 ≤ d ≤
√
n − 1, define

Q =
∏
p∈S

p and define Qp = Q
p for a prime divisor p of Q. Furthermore, let x0

and x1 be the unique positive integers smaller than Q such that the following
congruences hold: x0 ≡ x1 ≡ xpQ

−1
p (mod p) for all p ∈ S \ {q}, x0 ≡ xqQ

−1
q

(mod q) and x1 ≡ x′qQ−1
q (mod q). Then x0 and x1 differ by a multiple of Qq as

they are congruent modulo every prime divisor of Qq, so at least one of them is
bigger than Qq. Define x = max(x0, x1) > Qq and redefine xq := x′q if x1 > x0,
so that x ≡ xpQ

−1
p (mod p) holds for all p ∈ S. Finally, define b = xQ and

a = b−n and note that since Q is divisible by a fraction of

b√nc−1∑
d=1

δn(fd) > c− ε
2

of all primes below n, we obtain Q > e(c− ε2 +o(1))n by applying PNT. Therefore

b = xQ > Q2

q > e(2c−ε+o(1))n, from which the desired upper bound on the lower
limit then follows if we prove va,b < va,b−1. To prove this, we need two little
lemmas.

Lemma 29. For all p ∈ S, La,b is not divisible by p2.

Proof. The denominators between a and b that are divisible by p ∈ Sd are b,
b−p, . . . , b−dp, as b−dp ≥ b−n > b−(d+1)p. Since b−ip

p = xQp−i ≡ xp−i 6≡ 0

(mod p) for 0 ≤ i ≤ d by Lemma 28, we see that b− ip is not divisible by p2 for
any 0 ≤ i ≤ d, so La,b is not divisible by p2 either.

Lemma 30. For all p ∈ S, Xa,b is divisible by p, while p does not divide Xa,b−1.

Proof. This should be reminiscent of Lemma 3. Let p ∈ Sd be a prime divisor
of Q. For Xa,b (mod p) we calculate:
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Xa,b = La,b

b∑
i=a

1

i

≡ La,b
d∑
i=0

1

b− ip
(mod p)

≡ La,b
p

d∑
i=0

1

xQp − i
(mod p)

≡ La,b
p

d∑
i=0

1

xp − i
(mod p)

≡ La,b
p

fd(xp)∏d
i=0(xp − i)

(mod p)

≡ 0 (mod p)

As for Xa,b−1, assume by contradiction that p does divide Xa,b−1. Then Xa,b =
La,b
La,b−1

Xa,b−1 +
La,b
b ≡

La,b
b (mod p). This latter quantity is non-zero by Lemma

29, contradicting the fact that we just proved that p divides Xa,b.

And now we are almost done. For all primes p ∈ S, by Lemma 30 we have
ep(ga,b) = 1, ep(ga,b−1) = 0, while ep(La,b) = ep(La,b−1) = 1, by the proof of
Lemma 29. On the other hand, for all primes p /∈ S, let kp be such that pkp ≤
n < pkp+1. Then for these primes we have ep(ga,b−1) ≤ ep(ga,b)+min(ep(x), kp)

3

and ep(La,b) = ep(La,b−1) + max(0, ep(x)−kp). Adding these two (in)equalities
gives ep(La,b) + ep(ga,b−1) ≤ ep(La,b−1) + ep(ga,b) + ep(x) for all primes p /∈ S.
Combining both the estimates on the primes that do and do not belong to S,
and we get:

La,bga,b−1 =
∏

p prime

pep(La,b)+ep(ga,b−1)

=
∏
p∈S

pep(La,b)+ep(ga,b−1)
∏
p/∈S

pep(La,b)+ep(ga,b−1)

≤
∏
p∈S

pep(La,b−1)+ep(ga,b)−1
∏
p/∈S

pep(La,b−1)+ep(ga,b)+ep(x)

=
∏

p prime

pep(La,b−1)+ep(ga,b)
∏
p∈S

p−1
∏
p/∈S

pep(x)

= La,b−1ga,b
x

Q

< La,b−1ga,b

3jamaarhoezodan
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We therefore have va,b =
La,b
ga,b

<
La,b−1

ga,b−1
= va,b−1, and this finishes the proof of

the upper bound lim inf
a→∞

(
b(a)−a
log a

)
≤ 1

2c .

For the lower bound, let n be large and assume that b−a = n with b > e(1+c+ε)n.

We now aim to prove that va,b > va,b−1, from which 1
1+c ≤ lim inf

a→∞

(
b(a)−a
log a

)
fol-

lows. Define for an integer d with 1 ≤ d ≤
√
n−1 the set Td of primes p for which

n
d+1 < p ≤ n

d and such that p /∈ Sd. Let T be the union of all sets Td, assume

pkp exactly divides La,b−1 and define P =
∏
p∈T

pkp and P ′ =
∏
p∈T

p. To determine

the size of P we use PNT once more, and conclude P ≥ P ′ = e(1−c+o(1))n. To
prove va,b > va,b−1 we use the identity va,b =

La,b
ga,b

again and we see that what

we want to show is equivalent to
La,b
La,b−1

>
ga,b
ga,b−1

.

Write b = xyz such that y = gcd(b, P ) and z = gcd(b,
La,b−1

P ). Since gcd(P,
La,b−1

P ) =

1, it follows that yz = gcd(b, La,b−1) and x =
La,b
La,b−1

. By reasoning similar to

the proof of Lemma 26, we see yz = gcd(b, La,b−1) ≤ e(1+o(1))n and therefore

x =
La,b
La,b−1

> e(c+ε+o(1))n, so it suffices to prove
ga,b
ga,b−1

< e(c+ε+o(1)).

If pk is any prime power larger than b−a, then either pk does not divide La,b, or
there is exactly one integer i in the interval [a, b] for which pk divides i. In that
case Xa,b 6≡ 0 (mod p) as there is only one non-zero term in its sum. In both
cases we conclude that pk does not divide ga,b. So (the numerator of)

ga,b
ga,b−1

is

only divisible by prime powers smaller than or equal to n. But we claim that
it is not divisible by any prime dividing P , so that

ga,b
ga,b−1

≤ Ln
P ′ = e(c+o(1))n,

finishing our proof of the lower bound.

Lemma 31. For all p ∈ T , the largest power of p that divides ga,b−1 is at least
as large as the largest power of p that divides ga,b.

Proof. Let p ∈ Td. To prove the lemma, we consider three different cases. The
first case is where pk divides La,b for some k ≥ 2. Then, just as we saw before,
pk does not divide any other integer the interval [a, b], since b−a = n < p2 ≤ pk.
So we see that Xa,b 6≡ 0 (mod p) as we only have one non-zero term modulo p.
Therefore we are free to assume that the largest power of p that divides La,b
(and by extension ga,b) is p1. Now, the second case is where p does not divide

b. In that case Xa,b =
La,b
La,b−1

Xa,b−1 +
La,b
b ≡ La,b

La,b−1
Xa,b−1 (mod p) which is

equal to zero if and only if Xa,b−1 ≡ 0 (mod p) as well. For the third and final
case assume that p does divide b. Then we can follow the analogous calculation
of Xa,b (mod p) in Lemma 30, to see that Xa,b 6≡ 0 (mod p), as otherwise
fd(x) ≡ 0 (mod p) is solvable, contrary to p /∈ Sd.
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To finish the proof of Theorem 9, we have to bound c and the following lemma
takes care of that.

Lemma 32. With c equal to

∞∑
d=1

δ(fd)

d(d+ 1)
we have 0.82 < c < 0.85, from which

0.54 <
1

1 + c
and

1

2c
< 0.61 follow by computation.

Proof. In order to calculate c, we need to know the value of δ(fd), so we should
try to find some properties of the polynomials fd. Not all properties listed next
will be fully exploited in this paper, but they might very well be useful if one
wants to pin down the value of c more precisely.

Lemma 33.

1. For all d ∈ N and all x ∈ R we have fd(x) = (−1)dfd(d − x). In other
words, fd(x+ d

2 ) is an odd function when d is odd and it is an even function
when d is even. 4

2. When d is odd, δ(fd) = 1.

3. All roots of fd(x) are real and positive. More precisely, if x1, x2, . . . , xd
are the roots of fd(x) in ascending order, then i− 1 < xi < i for all i with
1 ≤ i ≤ d.

4. When d is even, fd(x) is irreducible if d ≤ 500 or when d+ 1 is prime.

Proof of 1. By direct calculation:

fd(d− x) =

d∑
i=0

d∏
j=0
j 6=i

(
(d− x)− j

)

=

d∑
i=0

(−1)d
d∏
j=0
j 6=i

(
x− (d− j)

)

= (−1)d
d∑
i=0

d∏
j=0
j 6=i

(x− j)

= (−1)dfd(x)

Plugging in d
2 + x gives fd(

d
2 + x) = (−1)dfd(

d
2 − x).

Proof of 2. By the first property we see fd(
d
2 ) = 0 when d is odd, so for odd

primes p we have fd(x) ≡ 0 (mod p) for x ≡ 2−1d (mod p).

4This was suggested by Will Jagy, see [16].
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Proof of 3. When 0 ≤ i ≤ d we claim that fd(i) = (−1)d−ii!(d − i)!, which,
one can note, is a slight generalization of Lemma 28. Since this is alternatingly
positive and negative, it follows from the intermediate value theorem that for
1 ≤ i ≤ d there must be an x ∈ (i − 1, i) for which fd(x) = 0. To prove our
claim, we simply calculate.

fd(i) =

d∏
j=0
j 6=i

(i− j)

=

i−1∏
j=0

(i− j)
d∏

j=i+1

(i− j)

= i!(d− i)!(−1)d−i

Proof of 4. For d ≤ 500 we have used the computer program PARI/GP which
has the function polisirreducible to check whether a polynomial is irreducible or
not. Whenever d + 1 = p is prime, assume fd(x) = adx

d + ad−1x
d−1 + . . . +

a1x + a0. One can easily check that ad = d + 1 = p and a0 = (−1)dd! = d!,
so that p exactly divides ad, while it does not divide a0. We furthermore claim
that for all i with 1 ≤ i ≤ d, ai is divisible by p, from which the irreducibil-
ity of fd(x) follows from Eisenstein’s criterion after applying the substitution
u = x−1, which reverses the coefficients of fd(x).

To prove that p divides all coefficients of fd(x) except for a0, we show that
fd(k)− d! ≡ 0 (mod p) for all k ∈ Z, which implies that fd(x)− d! must be the
zero polynomial when reduced modulo p. So let k be an integer and without

loss of generality we may assume 0 ≤ k ≤ p − 1. Then we see

d∏
j=0
j 6=i

(k − j) ≡ 0

(mod p), unless i = k. So fd(k)−d! ≡
d∏
j=0
j 6=k

(k−j)−d! ≡ d!−d! ≡ 0 (mod p).

Note that the conclusion fd(k) − d! ≡ 0 (mod d + 1) holds regardless whether
d+1 is prime or not, but only when d+1 is prime does this imply that fd(k)−d!
must be the zero polynomial, when reduced modulo d + 1. As for non-prime
moduli it is possible for a non-zero polynomial to have more roots than its de-
gree; x2 − 1 (mod 8) is a typical example.

Since δ(fd) = 1 when d is odd, for the rest of this section we may assume that
d = 2l is even. Denote by Gd the Galois group of fd(x) and let us view it as a
permutation subgroup of the symmetric group on d elements, as elements of Gd
permute the roots of fd(x). From now on, Sd will denote the symmetric group
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on d elements, as we no longer need our previous definition of Sd as a certain
set of primes. Now we have the following special case of a density theorem by
Frobenius.

Lemma 34. If fd(x) is irreducible, the density δ(fd) is equal to the proportion
of σ ∈ Gd such that σ is not a derangement. That is, for which a root x of fd
exists such that σ(x) = x.

Proof. See [14] for a nice survey with references. They generally work with
monic polynomials there, but this assumption can be omitted.

For example, since it is well-known that Sd contains d!

d∑
k=0

(−1)k

k!
derangements,

if Gd = Sd, then δ(fd) would be equal to 1−
d∑
k=0

(−1)k

k!
, which for large d approx-

imates 1− 1
e ≈ 0.63. However, we will see that, for d > 2, Gd is not isomorphic

to Sd, but is instead isomorphic to a subgroup of the so-called signed symmetric
group, S+

l with l = d
2 .

The signed symmetric or hyperoctahedral group S+
l is the group of permutations

σ of {−l,−l+ 1, . . . ,−1, 1, 2, . . . , l} such that σ(i) = −σ(−i), for all i. One can
also define it as the semidirect product Zl2oSl, where Sl acts on Zl2 in the natural
way by permuting coordinates. If one is familiar with wreath products, S+

l can
furthermore be viewed as the wreath product Z2 o Sl. It is generated by the set
of three permutations {(−l,−l+1, . . . ,−1)(1, 2, . . . , l), (−l,−l+1)(1, 2), (−l, 1)}.

Lemma 35. When d = 2l is even, Gd is isomorphic to a subgroup of S+
l .

Proof. Define gd(x) = fd(x + d
2 ). By Lemma 33, gd(x) is even and this makes

it slightly easier to work with. As gd(x) and fd(x) are translates of each other,
they have the same Galois group, so it suffices to find the Galois group of gd(x).
Let {x−l, x−l−1, . . . , x−1, x1, . . . , xl} be the roots of gd(x) with xi = −x−i and
let σ be an element of Gd. If σ(xi) = xj , then σ(−xi) = −xj , since σ is a field
automorphism. We can thusly define an injective homomorphism φ from Gd to
S+
l such that for all i, if σ ∈ Gd sends xi to xj , then φ(σ) sends i to j.

Now that we have narrowed the Galois group of fd(x) down a little bit, we can
try to find to find how many derangements it has. And whenever Gd ∼= S+

l we
have an exact formula.

Lemma 36. The number of derangements in S+
l equals

l∑
m=0

2l−ml!

m!

l−m∑
k=0

(−1)k

k!
.
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Proof. Let φ : S+
l → Sl be such that φ(σ) = τ with for all i with 1 ≤ i ≤ l,

τ(i) = |σ(i)|. So τ ’forgets’ about all signs of σ. In other words, the pre-image
of τ ∈ Sl consists of exactly the 2l elements σ1, σ2, . . . , σ2l ∈ S+

l such that for
all j with 1 ≤ j ≤ 2l and all i 6= 0 with −l ≤ i ≤ l, σj(i) ∈ {−τ(i), τ(i)}. Let
now τ ∈ Sl be a permutation that fixes exactly m integers. That is, assume that
(possibly after re-indexing) τ(i) = i for 1 ≤ i ≤ m but τ(i) 6= i for m+1 ≤ i ≤ l.
Then σ ∈ φ−1(τ) ⊂ S+

l is a derangement if and only if for all i with 1 ≤ i ≤ m,
σ(i) = −i. Therefore, for every permutation in Sl that fixes exactly m integers,
we have 2l−m derangements in S+

l .

To find the number of permutations in Sl that fix exactly m integers, we can
first choose m out of l integers to fix and then choose a derangement of the
other l−m integers. Using the formula for the number of derangements we saw
earlier, the number of permutations in Sl that fix exactly m integers is equal to

Dl,m =
l!

m!(l −m)!
(l −m)!

l−m∑
k=0

(−1)k

k!
. Since we get 2l−m derangements in S+

l

for every such permutation in Sl, we obtain the result we wanted to prove by
multiplying Dl,m by 2l−m and summing over all m.

Since S+
l contains 2ll! integers, the fraction of elements of S+

l that is not a

derangement equals 1 −
l∑

m=0

1

2mm!

l−m∑
k=0

(−1)k

k!
and it might be useful to note

that this converges to 1− 1√
e
≈ 0.393 when l goes to infinity. When Gd ∼= S+

l ,

this fraction equals δ(fd), by Lemma 34, and using the function GaloisGroup
from the computer program Magma we have found that Gd ∼= S+

l holds for all
even d ≤ 60, except for d = 8, 24, 48. This then finally allows us to find lower
and upper bounds on c.

c =

∞∑
d=1

δ(fd)

d(d+ 1)

=

∞∑
l=1

δ(f2l−1)

2l(2l − 1)
+

30∑
l=1

l 6=4,12,24

δ(f2l)

2l(2l + 1)
+

∑
l∈{4,12,24}

δ(f2l)

2l(2l + 1)
+

∞∑
l=31

δ(f2l)

2l(2l + 1)

=

∞∑
l=1

1

2l(2l − 1)
+

30∑
l=1

l 6=4,12,24

1−
l∑

m=0

1

2mm!

l−m∑
k=0

(−1)k

k!

2l(2l + 1)
+

∑
l∈{4,12,24}

δ(f2l)

2l(2l + 1)
+

∞∑
l=31

δ(f2l)

2l(2l + 1)

The first sum equals log(2) ≈ 0.6931 and the second sum is approximately equal
to 0.1281, giving c > 0.82. For an upper bound we use δ(f2l) ≤ 1 which gives
0.016 as upper bound for the third sum and 0.009 as upper bound for the fourth
sum, so that, adding it all up, c < 0.85.
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4 Two possible generalizations

4.1 Arbitrary sequences of numerators

We now ask ourselves: can we still prove results similar to those in Section 2
if we no longer assume that the ri are periodic? First of all, it is clear that we
still need at least some condition on the ri, because, for example, ri = (−1)ii
would already make for a very uninteresting sequence. But even assuming that
the ri are bounded is not enough to obtain results similar to e.g. Theorem 5.

Define, for example, the sequence with r1 = 1, ri = −1 if i ≥ 2 is a power of two

and ri = 0 otherwise. Then

n∑
i=1

ri
i

=
1

2k
, where 2k is the smallest power of two

smaller than or equal to n. So then v1,b is a monotonically increasing function
of b, providing a counterexample to a possible strengthening of Theorem 5.

However, this example seems a bit like cheating as well, because ri equals 0 for
almost all i. What if we instead insisted that the ri were bounded and non-zero?
Can we then conclude that for all a there exists a b for which va,b < va,b−1? As
it turns out, the answer is still no. Maybe somewhat surprisingly, given almost
any set A, if all we assume is that ri ∈ A for all i, then we cannot even exclude
the possibility that v1,n = Ln holds for all n ∈ N, unless A is of a special form.
More precisely:

Theorem 10. If A is a set of non-zero integers containing at least one odd
integer, and, for every odd prime p, there exist a1, a2 ∈ A such that a1 6≡ a2

(mod p), then it is possible to assign the ri values in A, such that the denomi-

nator of

n∑
i=1

ri
i

equals Ln for all n ∈ N. Conversely, if for some set of non-zero

integers A we have ri ∈ A for all i, and we know that vn, defined as the denom-

inator of

n∑
i=1

ri
i

, is only finitely often smaller than Ln, then A must contain at

least one odd integer, and, for every odd prime p, there must exist a1, a2 ∈ A,
such that a1 6≡ a2 (mod p).

Proof. First we will show that the converse statement is true. Now, if A only
contains even integers, it’s obvious that v1,n ≤ Ln

2 for all n ≥ 2. On the other
hand, if there exists an odd prime p such that for all a1, a2 ∈ A we have a1 ≡ a2

(mod p), then let k be any positive integer and set n = (p− 1)pk. We get:
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Ln

n∑
i=1

ri
i
≡ Lnr1

p−1∑
i=1

1

ipk
(mod p)

≡ Lnr1

pk

p−1∑
i=1

1

i
(mod p)

≡ Lnr1

pk

p−1∑
i=1

i (mod p)

≡ Lnr1

pk
p(p− 1)

2
(mod p)

≡ 0 (mod p)

Which implies that v1,n ≤ Ln
p .

Now we will prove the other direction via induction. For a start, it does not
matter what we let r1 be. Assume now that we have chosen r1, r2, . . . , rn−1 ∈ A

so that
Xn−1

Ln−1
=

n−1∑
i=1

ri
i

with gcd(Xn−1, Ln−1) = 1. Then we will show that we

can choose rn ∈ A so that gcd(Xn, Ln) = 1 holds as well. Note that, in general,
gcd(Xn, Ln) = 1 is equivalent to saying that the smallest prime divisor of Xn

is bigger than n. In particular, with the induction hypothesis we assume that
Xn−1 6≡ 0 (mod q) for all primes q ≤ n− 1.

We have to distinguish between three different cases; either n is a prime power,
or n is not a prime power but still divisible by a certain large prime power, or
n is not divisible by a large power of a prime.

Case I. n is a prime power.
Assume n = pk, let q 6= p be any other prime smaller than n and choose an arbi-
trary rn ∈ A that is not divisible by p. We claim that both Xn 6≡ 0 (mod p) and
Xn 6≡ 0 (mod q). First off, note that this case is the only one where Ln 6= Ln−1

and, more precisely, Ln = pLn−1. Now, on the one hand, Xn = pXn−1+ Lnrn
n ≡

Lnrn
n 6≡ 0 (mod p). While on the other hand Xn = pXn−1 + Lnrn

n ≡ pXn−1 6≡ 0
(mod q), by the induction hypothesis.

Case II. n = lpk for some 1 < l < p and k ≥ 1.
In this case we claim that this prime p is unique. Consider the possibility that

n can also be written as n = l̃qk̃ for some prime q 6= p with l̃ < q and k̃ ≥ 1. By

unique factorization we see qk̃|l and pk|l̃, which would imply l ≥ qk̃ > l̃ ≥ pk > l;

contradiction. In other words, if n = l̃qk̃, then l̃ > q, so that, in particular, qk̃+1

must divide Ln. Let now a1, a2 ∈ A be such that a1 6≡ a2 (mod p). Then,
regardless of whether we choose rn = a1 or rn = a2, for any q < n different
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from p we have Xn = Xn−1 + Lnrn
n ≡ Xn−1 (mod q), which we assumed to

be non-zero for all q < n. On the other hand, Xn−1 + Lna1
n 6≡ Xn−1 + Lna2

n
(mod p), so that at least one of those is non-zero modulo p. Set rn to an ai for
which this holds, and Xn = Xn−1 + Lnrn

n 6≡ 0 (mod p).

Case III. n = lpk implies l > p.
As we noted in the previous case, this implies that Ln is divisible by a power of p
that exceeds pk. And so regardless of the value of rn we get Xn = Xn−1+Lnrn

n ≡
Xn−1 (mod p) which we assumed was non-zero for all p < n. And we conclude
that, for this case, we may choose rn arbitrarily.

In all cases it was possible for us to choose rn ∈ A in such a way that Xn 6≡ 0
(mod p) holds for all p ≤ n, and the theorem is proved.

Even though we have shown that we cannot hope to strengthen Theorem 5
by allowing the ri to be non-periodic, we can however generalize Theorem 3 a
bit. That is, let {ri}i∈N now be a bounded sequence of non-zero integers with
r = maxi |ri| and assume m > r is just any given integer. Let 2 = p1 < p2 <
. . . < pz < m be the sequence of primes smaller than m and let m̃ be any integer
larger than m12z. We can then find n such that Xn has a large prime divisor.

Theorem 11. There exists an integer n ∈ [m̃, m̃ + m2z+2) for which Xn is
divisible by a prime larger than or equal to m.

The proof of this theorem goes through the exact same steps as the proof of
Theorem 3, since in that proof we never really used the fact that our original
sequence was periodic, apart from ensuring the existence of i for which ri 6= 0.
However, we can see that in this case the constants are much nicer, which might
seem very surprising at first. But this is all because of the extra assumption
that ri 6= 0 for all i.

For example, we assumed that w from Lemmas 12 and 10 was exponentially

large in the length of the interval I in order to prove that

w+k∑
i=w+1

ri
i
6= 0 5. How-

ever, when the ri are guaranteed to be non-zero and w ≥ k ≥ m, we can use
Sylvester’s Theorem which states that there exists an i ∈ [w + 1, w + k] such
that i is divisible by a prime larger than k, which is the length of the interval.

This will then imply that

w+k∑
i=w+1

ri
i

is non-zero, and at no point do we need w

to be very large at all.

Similarly, if the ri are non-zero, we do not have to deal with the possible exis-
tence of primes in Σ3. So terms like t4µ2 that keep popping up in, for example,

5We will come back to this point later on when we discuss ways to optimize our arguments.
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Section 2.5 will simply not appear in the proof of Theorem 11.

In conclusion we can say that very few results that we obtained thus far could
possibly carry over to the general non-periodic case, even with the obvious extra
assumptions that the ri are non-zero and remain bounded. But the one result
that does generalize, actually becomes quite nice.

A natural follow-up question is now: how many of the ri have to be 0 in order
for Theorem 11 to become false? Or, moving even further astray, fix m and let

|ri| ≤ m for all i. Furthermore assume that

(
k∑
i=1

ri
i

)−1

is an integer for all k

with 1 ≤ k ≤ n. What is the largest possible subset A of {1, 2, . . . , n} such that
for all i ∈ A we have ri 6= 0?

The example given at the start of this section provides an example with |A| >
c log(n), but it seems likely that better constructions are possible. However,
these questions, interesting and tempting as they may be, do lead us away from
the original subject of this paper. So for now we gladly pass these questions on
to the next brave soul.

4.2 When the denominators are powers of consecutive in-
tegers

Let d be a positive integer. It seems natural to look at sums of the form

b∑
i=a

ri
id

and see whether one can prove something similar to Theorem 2 in this more
general case. For a start, what we can say is that it is possible to generalize
Theorem 1 and almost the exact same proof can be used. We will use analogous
definitions (La,b should now be the least common multiple of all integers id ∈
{ad, (a+ 1)d, .., bd} for which ri 6= 0) and to specify the dependence on d, bd(a)
will denote the smallest b such that va,b < va,b−1. Just like the start of Section
2.2, let p > max(r, t) be a prime number such that p|Xn with n = lpk ≥ c1,
where n is the smallest such integer. Let k1 be the smallest integer for which
pλk1+k ≥ max(a, 2t) and choose b = npλk1 = lpλk1+k. We then obtain the
following generalization of Theorem 1.

Theorem 12 (Theorem 1, generalized version). If gcd(ld, Xa,b−1) < p, then
va,b < va,b−1 and bd(a) ≤ b ≤ max(a− 1, 2t− 1)lpλ.

The only difference here is ld in place of l in the assumption gcd(ld, Xa,b−1) < p,
which is of course harder to satisfy when d is large. On the other hand, when
d is large, then for certain j it is easier to find a large prime divisor p of Xj ,
which leads to the following corollary.
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Corollary 3. Let i and j > i be the smallest two (positive) indices such that ri
and rj are non-zero. If j = qk is a prime power, then, for all but finitely many
d, bd(a) is finite for all a.

Note that, in particular, if at least two out of r1, r2, r3, r4, r5 are non-zero, then
Corollary 3 applies.

Proof (sketch). We define the following constants: g = gcd(i, j), h = gcd(rij
d, rji

d),
A = h−1rij

d and B = h−1rji
d. The idea of introducing A and B is that

Xj = g−d(rij
d + rji

d), so that A + B divides Xj . In other words, if we can
prove that A + B has a large prime divisor, then Xj must have a large prime
divisor as well, and we do this by applying known bounds on the abc conjecture.
As usual, define m = 1 + max(|r1|, |r2|, . . . , |rt|, t) and let rad(x) be the radical
of x; the largest squarefree divisor of x. We then have the following inequalities.

Lemma 37.

1. If d > 4m2, then |A+B| > e
d
2 .

2. rad(AB) < 2m4.

3. rad(A+B) > K−1 log(A+B)
rad(AB) , for some absolute constant K ≥ 1.

Proof of 1. We have gd ≤ h ≤ |rirj |gd, so |A| = |ri|jd
h > |ri|jd

|rirj |gd >
1
m ( jg )d ≥ 2d

m ,

since j
g ∈ N and j > i ≥ g. On the other hand, i < j < 2m, and this gives

us the possibility of finding a lower bound on |A/B|, using the inequalities
log(1 + x) > x

2 (which is valid for 0 < x ≤ 1) and ex > 2x (which is valid for all
x ∈ R).

|A/B| > 1

m

(
j

i

)d
>

1

m

(
2m+ 1

2m

)d
=

1

m
ed log(1+ 1

2m )

>
1

m
e
d

4m

>
1

m
em

> 2

Combining our lower bounds on |A| and |A/B|, gives us the desired lower bound
on |A+B|;

54



|A+B| ≥ |A| − |B|

> |A| − 1

2
|A|

>
2d

2m

>
e

2d
3

em

= e
2d
3 −m

> e
2d
3 −

d
6

= e
d
2

Proof of 2. By definition,

rad(AB) ≤ rad(rij
drji

d)

≤ rad(ri)rad(jd)rad(rj)rad(id)

= rad(ri)rad(j)rad(rj)rad(i)

< 2m4

where the final inequality follows from max(|ri|, |rj |, i) < m and j < 2m.

Proof of 3. Since A and B are coprime by construction, we may apply Theorem
1 from [15] and take K large enough such that, with the notation of [15], KG

2
3 >

c log3(G). In particular, since max
x≥1

log3(x)

x
2
3

< 5, K = max(1, 5c) suffices. Note

that G in the context of [15] corresponds to rad(AB(A+B)) = rad(AB)rad(A+
B) in our notation. The statement A+ B < eKG is therefore, in our notation,
equivalent to K−1 log(A + B) < rad(AB)rad(A + B), which is the desired
inequality.

To sketch how to finish the proof of Corollary 3, assume d > 4Km4e2m2

. If we
then apply all inequalities from Lemma 37, we obtain rad(A + B) > d

4Km4 >

e2m2

. Since the product of all primes smaller than m2 is smaller than e2m2

by Lemma 8, we conclude that Xj , which is divisible by A + B, must be di-
visible by a prime larger than m2. To satisfy the condition gcd(jd, Xa,b−1) =
gcd(qkd, Xa,b−1) < p we now apply a suitable generalization of Lemma 19 to ob-
tain intervals I such that the largest power of q that divides Xn is smaller than
m2 < p, for all n ∈ I. The arguments from Section 2.8 now provide infinitely b
for which va,b < va,b−1.
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It should be noted that the proof of Lemma 19 and the ideas present in Section
2.8 are all mostly independent of the value of d, so they quite easily generalize
to work for general d. Moreover, Baker’s method again allows us to make ev-
erything explicit (see Section 2.9). Lastly, it might not be too difficult to prove
the finiteness of bd(a) for all d and a, but we will not pursue this.
We do however want to point out it would follow from Schanuel’s Conjecture
that bd(a) is always finite. This can be shown along the same lines as the pro-
posed proof of Theorem 4 of [2], combining the intervals that we constructed in
Lemmas 18 and 19 for certain primes p1, . . . , pk. As we mentioned in Section 1

this depends on the linear independence of θi = log(p1)
log(pi)

, and this can be proven

under the assumption of Schanuel’s Conjecture. But from now on, we will re-
strict to the case ri = 1 and for that, let us introduce some notation.

Let pd be the smallest prime p for which p− 1 does not divide d, define qi to be
the smallest prime divisor of Xi and let cd be the smallest constant such that
bd(a) ≤ cd max(1, a − 1) for all a ∈ N. Recall that Corollary 1 gave us c1 = 6,
since b1(1) = b1(2) = 6, and it possible to generalize this a little and calculate
cd for all d.

Theorem 13. If d is odd, then cd = 6. For even d we have the (in)equalities
cd = bd(1) = min

i
(iqi) ≤ 1

2pd(pd − 1), where the minimum runs over all i with

2 ≤ i ≤ 1
2 (pd − 1).

Proof. Since v1,bd(1) < v1,bd(1)−1, we see gcd(Xbd(1), Lbd(1)) > 1, so let p be a
prime divisor of gcd(Xbd(1), Lbd(1)). Then in particular p divides bd(1) and with
bd(1) = lp, we see that p must divide Xl. And this implies cd ≥ bd(1) ≥ min

i≥2
(iqi).

On the other hand, if for some i and all n ≥ a, gcd(id, Xa,n) < qi then with i = l
and qi = p, the upper bound on bd(a) in Theorem 12 would simplify and can be
rewritten as cd ≤ iqi. We claim that, for any a and n > a, the smallest prime
divisor of Xa,n is at least pd, which in particular implies qi ≥ pd for all i. It also
implies that gcd(id, Xa,b−1) = 1 < qi whenever i < pd and from this it follows
that cd = 6 when d odd, since for odd d it is easily seen that q2 = 3. We further-
more claim that, when d is even, q 1

2 (pd−1) = pd, so that min
i

(iqi) ≤ 1
2pd(pd − 1)

and the minimum can be taken over 2 ≤ i ≤ 1
2 (pd− 1), as qi ≥ pd. To finish the

proof of Theorem 13 let us state these claims again and prove them.

Lemma 38. Let p be a prime such that p − 1 divides d. Then for all positive
integers a and n ≥ a we have that p does not divide Xa,n.

Lemma 39. Let p be a prime such that p − 1 does not divide d. Then, first
of all, Xp−1 ≡ 0 (mod p). When d is even we furthermore have X 1

2 (p−1) ≡ 0

(mod p) as well.

Proof of Lemma 38. The idea is that d is a multiple of ϕ(p) = p − 1 so that
id ≡ 1 (mod p) for 1 ≤ i ≤ p − 1. Assume that pdk exactly divides La,n and
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let j1 and j2 be such that (j1 − 1)pk < a ≤ j1p
k ≤ j2p

k ≤ n < (j2 + 1)pk with
1 ≤ j1 ≤ j2 ≤ p− 1. Then let us look at Xn (mod p).

Xa,n ≡
La,n
pdk

j2∑
i=j1

1

id
(mod p)

≡ La,n
pdk

(j2 + 1− j1) (mod p)

And this is non-zero since 1 ≤ j2 + 1− j1 ≤ p− 1.

Proof of Lemma 39. Let g be a primitive root of p and recall that {g, 2g, . . . , (p−
1)g} and { 1

1 ,
1
2 , . . . ,

1
p−1} are both complete sets of non-zero residues modulo p.

In particular we see that

p−1∑
i=1

(ig)d ≡
p−1∑
i=1

id ≡
p−1∑
i=1

1

id
(mod p) and we use this to

prove that p divides Xp−1.

0 ≡ Lp−1

p−1∑
i=1

(
(ig)d − id

)
(mod p)

≡ (gd − 1)Lp−1

p−1∑
i=1

id (mod p)

≡ (gd − 1)Xp−1 (mod p)

Since gd− 1 6≡ 0 (mod p) as g is a primitive root of p and p− 1 does not divide
d, we see that Xp−1 must be divisible by p. Moreover, when d is even, we have
id = (−i)d, so that the first and second half of the sum are equal to one another;

0 ≡ L 1
2 (p−1)

p−1∑
i=1

1

id
(mod p)

≡ L 1
2 (p−1)

 1
2 (p−1)∑
i=1

1

id
+

1
2 (p−1)∑
i=1

1

(−i)d

 (mod p)

≡ 2X 1
2 (p−1) (mod p)

Since p − 1 does not divide d, we know that p 6= 2 and we therefore conclude
p|X 1

2 (p−1).

Corollary 4. For all d, cd = O(log10(d)). On the other hand, cd > 3 log(d)
infinitely often.
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Proof. Let c be a small enough constant and q be a prime smaller than cp
1
5

d .
Then in [11] it is proven that there exists a prime p < pd such that p ≡ 1
(mod q). Since d is divisible by p−1 for all p < pd, q divides d as well. Therefore

d ≥
∏

q<cp
1
5
d

q = e(1+o(1))cp
1
5
d , implying pd = O(log5(d)). Since cd < p2

d, the upper

bound follows. For the lower bound, choose d = lcm(1, 2, 4, 6, 10, . . . , pd − 1)
with pd > 106 and note that d is not divisible by any prime larger than 1

2pd.

We furthermore have log(pd)

log( 1
2pd)

< 1.053, since pd > 106. Then cd = min
i

(iqi) ≥

2pd > 3 log(d), where the final inequality follows from Lemma 8; d < p
π( 1

2pd)

d <

e1.053·0.63pd < e
2
3pd .

Corollary 5. cd =



6 if d ≡ 1 (mod 2)

10 if d ≡ 2 (mod 4)

21 if d ≡ 4, 8 (mod 12)

34 if d ≡ 12 (mod 24)

55 if d ≡ 24, 48, 72, 96 (mod 120)

Proof. All of these can be relatively quickly checked by calculating pd (which
increases in every case), finding the possible values of qi for the first few i and
applying cd = mini(iqi) ≤ 1

2pd(pd − 1), when d is even. Let us do this for the
final (and hardest) case of d ≡ 24, 48, 72, 96 (mod 120), and leave the rest for
the interested reader. So we will assume that 24 divides d but 5 does not divide
d. Since 24 is divisible by 1, 2, 4 and 6, but not by 10, we see pd = 11 and, using
Theorem 13, we obtain cd ≤ 55 right away. Furthermore, we claim that Xi is
not divisible by 13 for any i, not divisible by 17 for i ≤ 3 and not divisible by
19 or 23 for i = 2, so that iqi is minimized for i = 5, qi = 11. To prove that Xi

is not divisible by 13, 17, 19 or 23 for the relevant values of i, let us deal with
them one prime at a time.

By Lemma 38 we have that 13 does not divide Xi for any i, as 12|24. For 17
we have 1

id
≡ ±1 (mod 17), as 8|d. But 1

28 ≡ 1 (mod 17), so that X2 ≡ 2
(mod 17) and X3 (mod 17) is either 1 or 3, so definitely non-zero. Finally, the
only way either 19 or 23 divides X2 is if 1

2d
is congruent to −1 modulo 19 or

23. But for 23 this congruence is not solvable, while for 19 we have that 2 is a
primitive root, so 1

2d
≡ −1 (mod 19) precisely when d ≡ 9 (mod 18). But this

is impossible as d is even.

With the help of a computer it is not hard to extend Corollary 5. For example,
17|X6 when d ≡ 120 (mod 240), 37|X3 when d ≡ ±240 (mod 720), pd = 23
when gcd(d, 11 · 720) = 720, pd = 29 when gcd(d, 7 · 7920) = 7920 and 193 di-
vides X2 when d = 7 · 7920. Working this all out gives cd ≤ 406 for d < 110880.

Theorem 13 shows that cd is always equal to bd(1), which may suggest there
exists a constant c′d < cd such that bd(a) ≤ c′d(a − 1), as long as a is large
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enough. This is indeed often the case, at least when d is even. Let c′d be the
smallest constant such that bd(a) ≤ c′d(a− 1) holds for all a ≥ 4. 6 Then for all
even d < 120 we can improve upon Corollary 5;

Lemma 40. c′d ≤



25
3 = 8.3 if d ≡ 2 (mod 4)
147
8 = 18.375 if d ≡ 4, 8 (mod 12)

34
3 = 11.3 if d ≡ 12 (mod 24)
55
3 = 18.3 if d = 24
111
5 = 22.2 if d = 48

69
2 = 34.5 if d = 72
605
23 ≈ 26.3 if d = 96

Proof (sketch). We will not give all the details, but instead construct func-
tions fd(a) such that the motivated reader can check themselves that va,fd(a) <
va,fd(a)−1 and fd(a) ≤ c(a− 1) hold (for the constants c appearing in the state-
ment of Lemma 40) whenever fd(a) is defined, using the ideas that were already
present in Section 2.3. Moreover, in every case we make sure that if fd(a) = lpk

(where the meaning of p in the different cases should be clear), then every prime
divisor q of l will be such that q−1 divides d, so that gcd(ld, Xa,fd(a)−1) = 1 < p
follows immediately from Lemma 38 and does not have to be checked separately.
Finally, there is no doubt that these values can be extended and improved upon
even further, but this paper is long enough as it is.

If d ≡ 2 (mod 4) : fd(a) =



10 if 3 ≤ a ≤ 5

21 if a = 6 and d ≡ 2, 10 (mod 12)

26 if a = 6 and d ≡ 6 (mod 12)

9 · 5k−1 if 5k < a ≤ 6 · 5k−1 for some k ≥ 2

2 · 5k+1 if 6 · 5k−1 < a ≤ 5k+1 for some k ≥ 1

If d ≡ 4, 8 (mod 12) : fd(a) =



21 if 3 ≤ a ≤ 7

34 if a = 8 and d ≡ 4 (mod 8)

78 if a = 8 and d ≡ 0 (mod 8)

10 · 7k−1 if 7k < a ≤ 8 · 7k−1 for some k ≥ 2

3 · 7k+1 if 8 · 7k−2 < a ≤ 7k+1 for some k ≥ 1

If d ≡ 12 (mod 24) : fd(a) =


34 if 4 ≤ a ≤ 17

7 · 17k if 17k < a ≤ 2 · 17k for some k ≥ 1

14 · 17k if 2 · 17k < a ≤ 3 · 17k for some k ≥ 1

2 · 17k+1 if 3 · 17k < a ≤ 17k+1 for some k ≥ 1

6We choose a ≥ 4 just because it happens to work in all cases we will consider. We
conjecturally have bd(a) < (1 + ε)a for large enough a.
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If d ≡ 24 (mod 120) : fd(a) =


55 if 4 ≤ a ≤ 11

8 · 11k if 11k < a ≤ 2 · 11k for some k ≥ 1

9 · 11k if 2 · 11k < a ≤ 3 · 11k for some k ≥ 1

5 · 11k+1 if 3 · 11k < a ≤ 11k+1 for some k ≥ 1

If d = 48 : fd(a) =



55 if 4 ≤ a ≤ 5

16 · 37k if 37k < a ≤ 2 · 37k for some k ≥ 1

17 · 37k if 2 · 37k < a ≤ 3 · 37k for some k ≥ 1

18 · 37k if 3 · 37k < a ≤ 4 · 37k for some k ≥ 1

34 · 37k if 4 · 37k < a ≤ 5 · 37k for some k ≥ 1

3 · 37k+1 if 5 · 37k < a ≤ 37k+1 for some k ≥ 0

If d = 72 : fd(a) =


55 if 3 ≤ a ≤ 11

111 if 12 ≤ a ≤ 23

9 · 23k if 23k < a ≤ 2 · 23k for some k ≥ 1

3 · 23k+1 if 2 · 23k < a ≤ 23k+1 for some k ≥ 1

If d ≡ 96 (mod 120) : fd(a) =



55 if 4 ≤ a ≤ 11

111 if a = 23

7 · 11k if 11k < a ≤ 2 · 11k for some k ≥ 1

27 · 11k−1 if 2 · 11k < a ≤ 23 · 11k−1 for some k ≥ 2

5 · 11k+1 if 23 · 11k−1 < a ≤ 11k+1 for some k ≥ 1
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5 Final thoughts and remarks

It is not hard to show that for every ε > 0 we can improve the inequality
va,b < va,b−1 in Theorem 2 to the slightly stronger va,b < εva,b−1. To prove this,
first recall that we choseM =

⌊
e3.8m

⌋
in Section 2.8 to make sure that l > M was

either divisible by a prime q ≥ m, or a prime q < m such that qy divides l with

qy > m3. Assume for simplicity that ε ≤ 1
11 , so that 1.26(3 + log(ε−1)

log(m) + ε−1) <

1.9ε−1 and now choose M =
⌊
e1.9ε−1m

⌋
. Then we claim that l > M is either

divisible by a prime q > ε−1m, or a prime q < m such that qy divides l with
qy > ε−1m3. We prove this by showing that the product of all prime powers
smaller than or equal to ε−1m times the product of all prime powers qy ≤ ε−1m3

with q < m, is smaller than l.

l > e1.26m(3+
log(ε−1)
log(m)

+ε−1)

= (m3)
1.26m
log(m) · (ε−1)

1.26m
log(m) · (ε−1m)

1.26ε−1m

log(ε−1m)

> (ε−1m3)π(m) · (ε−1m)π(ε−1m)

≥
∏
q<m

q

⌊
log(ε−1m3)

log(q)

⌋ ∏
q≤ε−1m

q

⌊
log(ε−1m)

log(q)

⌋

To find an explicit bound on the smallest b such that va,b < εva,b−1, one can
go through the calculations from Section 2.9 again, which then results in the

constant c from Theorem 5 increasing to c = ee
ee

2ε−1m

.

In fact, in the case ri = t = 1, we can use Linnik’s Theorem to provide us with

a prime p that we can apply in Theorem 1 to effectively get lim inf
b→∞

va,b
va,b−1

= 0.

Let k0 ∈ N be arbitrary and let p be the smallest prime which is 1 (mod 2k0).
By the current best known bound on Linnik’s Theorem (see [11]), p < c125k0 for
some constant c1. Moreover, by Wolstenholme’s Theorem (or common sense),
n = l = p− 1 is such that p divides Xn, while gcd(l,Xa,b−1) < p2−k0 , as Xa,b−1

is always odd. Again by the proof of Theorem 1 we obtain va,b < 2−k0va,b−1

with b < c21210k0a. For the sake of clarity and completeness, let us cleanly state
the above results.

Corollary 6. For all ε ∈ (0, 1
11 ] there exists a constant cε := ee

ee
2ε−1m

such
that for all a ∈ N there exists a b < cεa for which va,b < εva,b−1.

Corollary 7. If ri = 1 for all i, then there is an absolute constant K such that
for all ε ∈ (0, 1] and all a ∈ N there exists a b < Kε−5a for which va,b < εva,b−1.

Speaking of effective results, even though we found an upper bound for the con-
stants c in Theorems 4 and 5, these bounds are of course outrageous. In many
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steps along the way we were perhaps a bit wasteful and there are surely many
improvements possible. For example, the reason we needed w from Lemmas 12
and 10 to be exponentially large in the length of the interval I, was so that

we could prove that the sum

w+k∑
i=w+1

ri
i

is non-zero. We proved this by using an

integer in the interval [w,w + c log(w)] which has a prime power divisor larger
than the length of the interval, completely analogous to the standard proof that
n∑
i=1

1

i
cannot be an integer for n > 1.

In [10] however, it is proven that in every large enough interval [w,w+
√
w] there

will be some integer which is divisible by a prime larger than w1/2+1/15, and
note that this is larger than the length of the interval. So the conclusion here is
that we only need w to be roughly the square of the length of I, instead of the
exponential of it. Of course there are some details to be worked out here (most
importantly the fact that we need the integer which has a large prime divisor
to be inside a residue class i (mod t) for which ri 6= 0) and it is not trivial, but
it can be done. If we then work this all out, we can bring the constants c in
Theorems 4 and 5 one exponent down. Actually, when ri 6= 0 for all i we do not
even need the rather difficult result on large prime divisors in short intervals.
We can just make do with Sylvester’s Theorem, as explained below Theorem 11.

On another note, it can be conjectured that b(a − 1) > b(a) happens infinitely
often, which might not be too hard to prove when r1 = t = 1, or perhaps even in
general. Other questions also remain in the classical special case of r1 = t = 1.
For example, it is still open if gcd(Xn, Ln) = 1 holds for infinitely many n or
not. This is equivalent to asking whether there are infinitely many n such that,

if l = l(p) is the first digit of n in base p, it holds that

l∑
i=1

1

i
6≡ 0 (mod p) for all

p < n. So it is a natural question to ask how many l there are for a given p for
which that sum can be equal to 0 (mod p). Even though this does not seem to
immediately settle the original question, we do have the following (admittedly
rather weak) result.

Lemma 41. For any prime p there are at most cp2/3 integers l < p for which

f(l) =

l∑
i=1

1

i
≡ 0 (mod p), where c = 32/3

2 .

We will just give the idea of the proof, as for a more complete write-up one can
check Lemmas 2.3 and 2.4 in [12], where the same result with the same proof
was found, independently.

Proof. For a fixed k, f(l+k)−f(l) is a rational function in l where the numerator
is a polynomial of degree at most k− 1. So it has at most k− 1 roots modulo p.
Therefore, there can be at most k − 1 integers l for which f(l + k) ≡ f(l) ≡ 0
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(mod p). So if we have more than 1 + 2 + . . . + k integers l for which f(l) ≡ 0
(mod p), then these integers cannot stay bounded inside an interval of length
less than 1 · 2 + 2 · 3 + . . .+ k(k+ 1) > 1

3 (k+ 1
2 )3, which needs to be less than p.

Therefore, k + 1
2 < (3p)1/3 and 1 + 2 + . . .+ k < 1

2 (k + 1
2 )2 < 1

2 (3p)2/3 = cp2/3

with c = 32/3

2 .
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